Modeling and simulation of fuzzy logic controller for optimization of the greenhouse microclimate management

Didi Faouzi*1, N. Bibi-Triki1, B. Draoui2, A. Abene3

1Materials and Renewable Energy Research Unit M.R.E.R.U, University of Abou-bakr Belkaïd, B.P. 119Tlemcen, Algeria
2Energy Laboratory in Drylands, University of Bechar, Bechar Algeria
3Euro-Mediterranean Institute of Environment and Renewable Energies, University of Valenciennes, France

(Manuscript received 21 November 2016; accepted for publication 8 June 2017)
Abstract. Agricultural greenhouse is largely answered in the agricultural sphere, despite the shortcomings it has, including overheating during the day and night cooling which sometimes results in the thermal inversion mainly due to its low inertia. The glasshouse dressed chapel is relatively more efficient than the conventional tunnel greenhouse. Its proliferation on the ground is more or less timid because of its relatively high cost. Agricultural greenhouse aims to create a favorable microclimate to the requirements of growth and development of culture, from the surrounding weather conditions, produce according to the cropping calendars fruits, vegetables and flower species out of season and widely available along the year. It is defined by its structural and functional architecture, the quality thermal, mechanical and optical of its wall, with its sealing level and the technical and technological accompanying. The greenhouse is a very confined environment, where multiple components are exchanged between key stakeholders and the factors are light, temperature and relative humidity. This state of thermal evolution is the level sealing of the cover of its physical characteristics to be transparent to solar, absorbent and reflective of infrared radiation emitted by the enclosure where the solar radiation trapping effect otherwise called “greenhouse effect” and its technical and technological means of air that accompany. The socio-economic analysis of populations in the world leaves appear especially the last two decades of rapid and profound transformations These changes are accompanied by changes in eating habits, mainly characterized by rising consumption spread along the year. To effectively meet this demand, greenhouse systems have evolved, particularly towards greater control of production conditions (climate, irrigation, ventilation techniques, CO2 supply, etc.). Technological progress has allowed the development of greenhouses so that they become increasingly sophisticated and of an industrial nature (heating, air conditioning,
control, computer, regulation, etc.) New climate driving techniques have emerged, including the use of control devices from the classic to the use of artificial intelligence such as neural networks and / or fuzzy logic, etc. As a result, the greenhouse growers prefer these new technologies while optimizing the investment in the field to effectively meet the supply and demand of these fresh products cheaply and widely available throughout the year, The application of artificial intelligence in the industry known for considerable growth, which is not the case in the field of agricultural greenhouses, where enforcement remains timid. It is from this fact, we undertake research work in this area and conduct a simulation based on meteorological data through MATLAB Simulink to finally analyze the thermal behavior – greenhouse microclimate energy.