Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project No BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access
This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student’s campus, 6000 Stara Zagora Bulgaria Telephone: +359 42 699330 +359 42 699446 http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: ascitech@uni-sz.bg
Investigations on friction coefficients of cow hooves with different dairy farm floor types

T. Penev1*, Z. Manolov², I. Borissov³, V. Dimova⁴, Tch. Miteva¹, Y. Mitev¹, V. Kirov⁵

¹Department of Applied Ecology and Animal Hygiene, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria
²Undergraduate Zootechnics Student, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria
³Department of Veterinary Surgery, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
⁴Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria
⁵Department of Animal Sciences, Faculty of Veterinary Medicine, University of Forestry, Sofia, Bulgaria

Abstract. The investigation was performed in three Bulgarian free-stall cattle farms with different flooring types. The floor of farm A was covered with two rubber mat types, with and without abrasion lining. At the other two farms, floors were made of grooved concrete which was used for 6 years (farm B) and for 4 years (farm C). The purpose of the investigation was to determine the friction coefficients on the different floorings with a tribometer described by Phillips and Morris (2000) and the influence of some factors as usage period, presence of manure and water on the floor. The coefficient of static friction of dry floors at the studied farms varied from 0.46 on the concrete floor at farm B to 0.59 on the rubber floor with abrasion lining. It indicated that dry floors at the surveyed farms provided good safety for standing animals. The dynamic friction of dry floors was the lowest at farm B – 0.44, and the highest on the rubber floor with abrasion lining at farm 1 – 0.56. When water was spilled on the floor, static friction coefficients of all studied floorings decreased except for the rubber floor with abrasion lining, where it increased up to 0.61. The dynamic friction coefficients were lower when all floors were wet. The lowest dynamic friction coefficient was determined on the floor at farm B – 0.39, which is under the critical minimum. This was attributed to its longer usage and thus, its wearing and smoothing. Static friction coefficients on manure-covered floors varied from 0.4 to 0.49. The lowest dynamic friction coefficient (0.36) was measured on the floor at farm B, and the highest (0.46) – on the rubber floor with abrasion lining, farm A.

Keywords: coefficient of dynamic friction, coefficient of static friction, hooves, rubber floor, concrete floor

Introduction

Locomotion is an essential part of the natural behaviour and welfare of dairy cows. It has a beneficial effect on the cows’ health (Gustafson, 1993; Gergovska, 1992). Nevertheless, the used cattle production systems often limit or impede the locomotory activity of dairy cows (Fraser and Broom, 1997). The flooring type is one of the most important elements of the cows’ locomotion at free-stall farms (Stefanowska et al., 1998). Most technological alleys at cattle farms are made of concrete, because it is hard, cheap and acceptable with regard to hygiene maintenance. The hardness, abrasive properties and the inadequate friction of concrete floors however suggest that concrete predisposes cows to hoof diseases (Webb and Nilsson, 1983; Bergsten and Frank, 1996). Poor hygiene on the floor with strong manure mass may be a factor for the development of lameness in cows, reducing the amount of fat in claw horn, and thus its strength (Penev, 2013; Penev et al., 2014). Improper environmental conditions are some of the most important conditions for the development of lameness (Mitev et al., 2011; Penev et al., 2012). Lameness as a clinical symptom of the disease of the legs and feet means loss of productivity and poor reproductive conditions (Mitev et al., 2011; Mitev et al., 2012; Penev, 2013).

Herlin and Drevermo (1997) established that rearing cows in a premise with grooved concrete throughout the year had a negative impact on the locomotory system of animals. The poor quality of the floor could influence the social and sexual behaviour of cows, as well as their welfare (Zeeb, 1983; Benz, 2002; Mitev et al., 2012).

Concrete used for lining alleys at free-stall barns is usually considered as too slippery for normal locomotion (Webb and Nilsson, 1983; Faull et al., 1996). The movement of the cow is influenced both by the rough or the soft surface of the floor (Telezhenko and Bergsten, 2005; Rushen and de Passillé, 2006). With their use, concrete floors become smoother and thus slippery for cows, enabling falling down and injury (Schlichtung, 1987). The presence of manure mass (MM) or water on the floor is another important factor making cows walk with unnatural gait (Albutt et al., 1990).

The purpose of the investigation was to determine the coefficients of static and dynamic friction on different states of two rubber floorings and two types of concrete floors used for a different period in free-stall barns for dairy cows.

Material and methods

The investigation was performed at 3 cattle farms. Farm A. The farm has freestall barn with individual cubicles for 200 dairy cows. The cubicle surface is made of concrete, bedded with straw. Alleys were covered with two types of rubber mats. Near the waterers, and at the end of alleys where cows usually change the direction of walk, the concrete floor is covered with rubber mats with abrasion particles (pediKURA - KRAIBURG®), which are designed to wear the hooves of animals. The other part of alleys is covered with rubber mats without abrasion lining (KURA P - KRAIBURG®). The cleaning of manure is performed with automated electrically-driven scrapers.

Farm B. The cows are reared indoor in a 180-cow freestall barn with individual cubicles for rest. The barn has been used since 2006 – for 6 years. Technological alleys in the barn are made of grooved concrete, and the cubicles – bedded with rubber mats. The cleaning

* e-mail: penevioncho@yahoo.com
is performed with a delta scraper.

Farm C. The cows are reared indoor in a 478-cow freestall barn with individual cubicles for rest, built in 2008, i.e. used for 4 years. The barn is divided in two parts by a feeding alley and in each part cubicles are arranged in 3 rows. Technological alleys are made of grooved concrete, and the cubicles – bedded with composted manure and straw. The cleaning is done with a delta scraper.

The coefficients of static and dynamic friction were determined by a modification of the tribometer described by Phillips and Morris (2000). On a 1 x 0.45 m platform, four pipes 105 mm in diameter and 200 mm long were attached. Into the pipes, four cow’s feet (two forelimbs and two hindlimbs) obtained from a slaughterhouse were inserted. A cow with a normal gait was chosen, without signs of lameness and whose hooves were with normal shape. The carpal and tarsal joints were removed and the other parts of the limbs and hooves were fixed into the pipes by auxiliary devices in a way that the weight of the platform was carried by the sole surface of the hooves after placing it on the floor (Figure 1).

The weight of the thus prepared platform was 30 kg, and during the trials, an additional 150-kg weight was added (Figure 2). The total weight of the tribometer therefore consisted of the platform weight plus the added weight.

According to Phillips et al. (1998) and Phillips and Morris (2001), the application of a 150-kg weight on the platform was sufficient for objective evaluation of the coefficients of friction between cows and the floor. For determining the static and dynamic friction coefficients, the loaded platform was pulled on floor surface from the caudal part in order not to bend the joints over the hooves and to preserve their contact with the floor. The force necessary to move the platform was measured by means of a dynamometer provided by the Centre for Testing and European Certification www.ctec-sz.com.

The coefficients of static and dynamic friction between hooves and the tested floors were determined when they were dry, wet or covered with manure mass. The coefficients of static and dynamic friction (μ) were determined as the ratio between the minimum force for moving the platform and the platform weight (coefficient of static friction) and the ratio between the minimum force needed to maintain the platform in motion and the platform weight (coefficient of dynamic friction).

The coefficient of friction was calculated according to the formula:

$$\mu = \frac{F}{M}$$

where μ is coefficient of friction, F – the load recorded by the dynamometer (kg), M – the platform weight with the applied load (kg).

Data were statistically processed by the STATISTICA 6 software, and graphs were made in Microsoft EXCEL.

Results and discussion

Figure 3 presents the coefficients of static and dynamic friction on dry floors at farms. It was established that all coefficients of static friction were between 0.4 < μ < 0.6. According to Phillips and Morris (2001) they are an important parameter of floor friction properties and therefore, locomotion safe.

The dynamic friction coefficient is more important for the safety of farm flooring and the probability of slipping for dairy cows (Phillips and Morris, 2001). On dry floors it varied within an optimal range...
The measured values indicated that cows could walk with an optimal speed, stride length and stride frequency (Phillips and Morris, 2001).

The data presented on Figure 4 demonstrated that static friction coefficients on wet floors were lower compared to those on dry floors. Only for the rubber mat with abrasion lining, the static friction coefficient increased when it was wet. There were statistically significant differences between values measured for this flooring type (P<0.05) and all other tested floorings for both coefficients of static and dynamic friction. The rougher surface of this floor due to abrasive particles probably counteracted the effect of water on friction forces. Phillips and Morris (2000) and Franck et al. (2007) also reported higher coefficient of friction of wet vs dry floor in support of our findings. When the floor surface was rough enough, the water was retained among abrasive particles and did not influence negatively the friction of hooves and floor (Franck et al., 2007).

For all compared floorings except for the concrete floor at farm B, the presence of water did not exert substantial negative effect on friction coefficients. The floor at farm B was used for 6 years (since 2006) or 2 years more compared to the concrete floor at farm C. This probably resulted in more significant wearing of the flooring at farm 2 and hence, the statistically significantly lower coefficients of static and dynamic friction vs those measured at farm C. According to Web and Nilsson (1983) a friction coefficient of 0.4 is critical and lower values increase exponentially the risk of slipping of cows. According to our experiments, the water on the floor at farm B reduced the coefficient of dynamic friction to values which could have unfavorable consequences for animals. Therefore, the water on farm floorings acts as a lubricant by reducing the friction between the cow’s hoof and the floor and increasing the risk for slipping (Nilsson, 1988).

The presence of manure mass on floorings reduced both coefficients of dynamic and static friction on all tested floorings (Figure 5). For the rubber mat without abrasion lining, and the concrete floor at farm B, static friction coefficients were under the critical minimum. The low coefficient of static friction (μ<0.4) in the

![Figure 4. Coefficients of static and dynamic friction on wet floorings (a,b,c – the differences between columns were statistically significant at P < 0.05)](image)

![Figure 5. Coefficients of static and dynamic friction on manure-covered floorings (a,b,c – the differences between columns were statistically significant at P < 0.05)](image)

Conclusion

Dry floors at the three surveyed farms provided an optimal friction and safety for animals. The rubber flooring at farm A had the highest friction coefficients. The wetting of the rubber floor with abrasion lining increased its friction properties as compared to the dry state due to abrasive particles included. The concrete floor at farm B exhibited a coefficient of dynamic friction below the critical minimum when covered with either water or manure, due to the wearing during its use. Rubber floorings with abrasion lining were with excellent coefficients of static and dynamic friction even when they were covered with manure.
References

Gergovska Zh, 1997. Comparative study on some reproduction and production traits in dairy cows with different locomotory activity during the dry period. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria.

Penev T, 2013. Influence of hygienic and technological factor on lameness in dairy cows with regard to productivity and reproduction traits. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria (Bg).

Review

Fibromelanosis in domestic chickens
H. Lukanov, A. Genchev

Genetics and Breeding

Rumi and IPK Nelina – new cotton varieties
A. Stoiilova, Hr. Meluca

Drying of seeds from common wheat (Triticum aestivum L.) by using Silica gel for ex situ storage
P. Chamurlyisky, N. Tsenov, S. Stoyanova

Breeding evaluation of newly stabilized lines of maize
V. Valkova

Apricot breeding for resistance to Sharka
V. Bozhkova, S. Milusheva

Dry matter accumulation in the varieties of wheat (Triticum aestivum L.) according to previous crop
A. Ivanova, N. Tsenov

Reproductive performance of weaning sows after treatment with Fertipig®
S. Dimitrov, G. Bonev

Reproductive performance of Polish Large White and Polish Landrace sows
B. Szostak, V. Katsarov

Nutrition and Physiology

Effect of the feeding of products stimulating the development of bee colonies
R. Shumkova, I. Zhelyazkova

Investigations on kidney function in mulard ducklings with experimental aflatoxicosis
I. Valchev, N. Grozeva, L. Lazarov, D. Kanakov, Ts. Hristov, R. Binev, Y. Nikolov

Rumen fermentation in yearling rams fed different rations
V. Radev

Effect of different lipid and protein dietary levels on rumen ciliate fauna and cellulolytic activity in yearling rams
V. Radev, I. Varlyakov, R. Mihaylov
Production Systems

Efficacy and selectivity of antibroadleaved herbicides at durum wheat against volunteers of coriander, Clearfield canola, Clearfield sunflower and ExpressSun sunflower
G. Delchev

Investigations on friction coefficients of cow hooves with different dairy farm floor types
T. Penev, Z. Manolov, I. Borissov, V. Dimova, Tch. Miteva, Y. Mitev, V. Kirov

Productivity of irrigation cotton cultivated under different inter-row spaces
I. Saldzhiev, A. Muhova

Stability evaluation of mixtures among preparations with different biological effect on the basis of grain yield in spring vetch
G. Delchev, N. Georgieva, I. Nikolova

Biological activity of plant protection products against *Tuta absoluta* (Meyrick) in tomato grown in greenhouses
N. Valchev, V. Yankova, D. Markova

Agriculture and Environment

Changes of some agro-chemical parameters of *Pellic Vertisol* (FAO) soil type in growing cereal crops under organic system of agriculture
V. Koteva

Product Quality and Safety

Carcass composition and meat quality in lambs reared indoors and on pasture
T. Popova, P. Marinova

Fatty acids and lipid indices of buffalo milk yogurt
N. Naydenova, T. Iliev, G. Mihaylova

Effect of supplementary honey and artificial sugar feeding of bees on the composition of royal jelly
R. Balkanska, I. Zhelyazkova, M. Ignatova, B. Kashamov

Influence of the amount of milk clotting enzyme with microbial and camel origin on the coagulation time of cow's milk
P. Panayotov, K. Yoanidu, P. Boyanova, B. Milenkov

Determining chlorophyll and carotenoid content in *Bombyx mori* L. excreta by Near Infrared Spectroscopy
S. Atanasova, M. Panayotov, D. Pavlov, M. Duleva
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research papers (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Todorov N and Mitev J. 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows,IX’ International Conference on Production Diseases in Farm Animals, Sept.11 – 14, Berlin, Germany, p. 302 (Abstr.).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Instruction for authors