Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Internet Access

This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student's campus, 6000 Stara Zagora Bulgaria
Telephone: +359 42 699330 +359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
Determining chlorophyll and carotenoid content in *Bombyx mori* L. excreta by Near Infrared Spectroscopy

S. Atanasova¹*, M. Panayotov², D. Pavlov³, M. Duleva⁴

¹Department of Biochemistry Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria
²Department of Animal Science – Non-ruminants and Other Animals, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria.
³Department of Plant Production, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria.
⁴Student, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

Abstract. For the needs of the experiment excreta age five of silkworms (populations of the monovoltine crossbreds of *Bombyx mori* L. Super1xYeca2, 19x1014 and 1013x1014) raised in spring have been used. Spectral measurement (NIR spectroscopy) of excreta has been made non-destructively by measuring diffuse reflection of samples within the range 900–1700 nm with the spectrometer NIRQuest 512. Afterwards chlorophyll a, chlorophyll b and carotenoids content in these samples has been determined through acetone extraction and determining the absorption of the resulting solution at 440.5, 644 and 662 nm by spectrophotometer Spekol 11. Partial Least Square Regression (PLS) has been used to obtain equations for determining the amount of chlorophyll and carotenoids in excreta based on near-infrared spectral data. The results obtained show that chlorophyll a, chlorophyll b and carotenoids content in silkworm excreta can be successfully determined by non-destructive spectral analysis within the range 900-1700 nm. The obtained correlation coefficients, revealing the relationship between the parameters tested are higher than 0.96. Extremely high accuracy has been reached in determining the content of chlorophyll a and carotenoids. Lower is the accuracy in determining chlorophyll b, which can be accounted for by the fact that chlorophyll b is more unstable and quickly dissociates after extraction.

Keywords: silkworms’ excreta, chlorophyll a, chlorophyll b, carotenoids, near-infrared spectroscopy

Introduction

Enhancing sericulture efficiency is related to the use of products considered so far to be waste such as silkworm excreta. That would make it possible both to receive additional income from those products not used so far and ecological effect due to reducing the amount of waste generated. Interesting is the application of chlorophyll paste, pectin, phytollum, carotene and other substances extracted from silkworm excreta. They are used in medicine for treatment of various diseases such as hepatitis, pancreatitis, chronic nephritis, gastritis, etc., as well as in the cosmetic industry (Singh and Jayasomu, 2002). Raghavendra et al., 2010, found that partially purified protein from the *Bombyx mori* L. fecal mass with molecular mass 35kDa shows considerable hepaprotection effect in case of liver damage. In recent years the possibility has been studied for chlorophyll and chlorophyll derivatives to be used as antimicrobial, antiviral and antitumor agent or as part of photodynamic therapy.

The efficiency of photodynamic therapy by using chlorophyll derivatives to prevent the development of bladder cancer after surgical treatment was studied by Liu et al., 1998. They found statistically reliable effect on cancer recurrence. Lim et al., 2002 studied chlorophyll derivatives from silkworm excreta in photodynamic antimicrobial chemotherapy. The vesicular stomatitis virus has been used as a model organism. The results obtained show that chlorophyll derivatives can be used as a potential photodynamic antiviral agent which stops the replication of the studied virus. The action of chlorophyllin, a chlorophyll derivative, in concentrations of 25–400 µg/ml, on tumor cells was studied by Chiu et al. (2003, 2005). They found that chlorophyllin reduced the proliferation of tumor cells by 8.2–95.7% after 72 hours of incubation and caused apoptosis of MCF-7 cells.

The objective of this study is to investigate the possibility to determine chlorophyll and carotenoids content in *Bombyx mori* L. excreta through direct non-destructive spectral analysis in the near-infrared range.

Materials and methods

The study has been conducted at the Training Experimental Centre of Sericulture section at the Department of Animal Science – Non-ruminants and Other Animals at the Faculty of Agriculture, Trakia University during the spring season of 2012. In the course of rearing during age five of silkworm development excreta from 3 *Bombyx mori* L. crossbreds 19 x 1014, 1013 x 1014 and Super 1x Xeca 2 were collected.

Chlorophyll a, chlorophyll b and carotenoids content have been determined through acetone (100%) extraction and determining the absorption of the resulting solution at 440.5, 644 and 662 nm by spectrophotometer Spekol 11. After recording absorption the amount of chlorophyll and carotenoids in the extract is calculated by the formulae of Holm and Weststein (Tretyakova, 1982):

\[
\text{Chlorophyll a} = 9.784xD_{440} – 0.990xD_{662}
\]

\[
\text{Chlorophyll b} = 21.426xD_{662} – 4.650xD_{440}
\]

\[
\text{Carotenoids} = 4.695xD_{440} – 0.268(x_{\text{Chl. a}} + x_{\text{Chl. b}})
\]

After that their concentration in excreta is determined in units mg.g⁻¹ on the basis of the initial amount and the volume of acetone extract.

Spectral measurement (NIR spectroscopy) of excreta was performed non-destructively by measuring diffuse reflection of
samples on the spectrometer NIRQuest 512.
NIRQuest 512 by Ocean Optics company is a portable scanning spectrophotometer operating in the range 900-1700 nm. It is a new generation of spectrophotometers operating with fiber optics probes and a diode array with 512 pixel as a detector. The spectrophotometer is linked to a computer via USB port and is controlled by the software package SpectraSuite by the Ocean Optics company. The spectral data from NIRQuest are recorded as a text file and then opened in the software Pirouette 4.5 (Infometrix, Inc., USA), which is further used for processing spectral data.

Partial Least Square Regression (PLS) is used for quantitative analysis. With this method spectral data and the values of the necessary quantitative parameter are processed simultaneously and new factors are calculated, the first factor describing maximum part of variations in spectral and quantitative data, the second factor describing maximum part of the remaining variations and so on. In this way through several such factors we can describe both the spectral and quantitative information about the samples. Additionally, for improving the accuracy of determination the orthogonal signal a correction method is used. With this method we define which parts of the available spectral information correlate with the defined parameter and which do not. The spectral information of those wavelengths that are irrelevant for determining the necessary parameter is removed prior to applying the PLS regression. In this way models with lesser number of factors and smaller error of determination could be obtained.

Results and discussion

The results obtained about concentration of chlorophyll a, chlorophyll b, the sum total of chlorophyll a+b and carotenoids in the analyzed excreta from the three crossbreds obtained through acetone extraction, spectrometric measurement of the extract and calculation by the equations described are presented in Table 1. Variations have been observed in the chlorophyll and carotenoids content in the samples analyzed and the variations in the carotenoids content are less than the variations in the chlorophyll content.

The spectral data obtained from measurement of the excreta, transformed as second derivative, are presented on Figure 1. Differences can be seen in the absorption of the various wavelengths and differences in the absorption of the same wavelength among samples, which is the basis for quantitative determination of the content of various components in excreta.

The statistical parameters of the calibration equations obtained for determining the concentration of chlorophyll a, chlorophyll b, the sum total of chlorophyll a+b and carotenoids in the analyzed excreta based on their spectral data are presented in Table 2. The parameter SEC is the standard error in the calibration equation and SECV is an error in cross validation, which is an estimation of what error could be obtained when analyzing unknown samples. Rcv and Rcal is a multiple correlation coefficient in cross validation and calibration. A very good accuracy in determining the studied parameters has been obtained. A graphic illustration of the results is presented on Figures 2, 3 and 4. For all parameters the obtained correlation coefficients of the calibration equations are higher than 0.966 both in calibration and in the cross check. When comparing the results it can be seen that the lowest is the accuracy in

Table 1. Range, mean values and standard deviation of the values of chlorophyll a, chlorophyll b, the sum total of chlorophyll a+b and carotenoids in the analyzed excreta

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chlorophyll a</th>
<th>Chlorophyll b</th>
<th>Chlorophyll a+b</th>
<th>Carotenoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.636</td>
<td>0.566</td>
<td>1.201</td>
<td>0.304</td>
</tr>
<tr>
<td>Min</td>
<td>0.260</td>
<td>0.195</td>
<td>0.454</td>
<td>0.103</td>
</tr>
<tr>
<td>Max</td>
<td>1.217</td>
<td>1.1831</td>
<td>2.376</td>
<td>0.728</td>
</tr>
<tr>
<td>SD</td>
<td>0.288</td>
<td>0.304</td>
<td>0.585</td>
<td>0.163</td>
</tr>
</tbody>
</table>

Table 2. The statistical parameters of the calibration equations obtained for determining the concentration of chlorophyll a, chlorophyll b, the sum total of chlorophyll a+b and carotenoids in the analyzed excreta based on their spectral data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PLS factor</th>
<th>SECV</th>
<th>r_cvl</th>
<th>SEC</th>
<th>r_cvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll a</td>
<td>4</td>
<td>0.009</td>
<td>0.998</td>
<td>0.007</td>
<td>0.999</td>
</tr>
<tr>
<td>Chlorophyll b</td>
<td>10</td>
<td>0.044</td>
<td>0.967</td>
<td>0.022</td>
<td>0.993</td>
</tr>
<tr>
<td>Chlorophyll a+b</td>
<td>8</td>
<td>0.029</td>
<td>0.996</td>
<td>0.015</td>
<td>0.999</td>
</tr>
<tr>
<td>Carotenoids</td>
<td>3</td>
<td>0.004</td>
<td>0.999</td>
<td>0.003</td>
<td>0.999</td>
</tr>
</tbody>
</table>

![Figure 1. Spectral data of excreta samples transformed as second derivative](image1.png)

![Figure 2. Correlation between the actual values of chlorophyll a and the ones determined on the basis of the spectral data in *Bombyx mori* L. excreta samples](image2.png)
determining the chlorophyll b content. That can be accounted for by the fact that chlorophyll b is more unstable and quickly dissociates after extraction. When analysing the results no dependence of the accuracy of determining the studied parameters on the silkworm crossbreds from which the excreta have been taken, is found. That could allow the arriving at general calibration equations for each crossbred.

Figure 5 presents a diagram of the parameter „correlation spectrum” in determining chlorophyll and carotenoids in excreta samples. The diagram shows that there is significant correlation between the spectral data of certain wavelengths, reaching 0.8, and the chlorophyll and carotenoids content. There are also some differences between the spectral information significant for determining the measured components. Lower is the correlation between the spectral data and the chlorophyll b content which results in lower accuracy of determining.

Conclusion

The data obtained in this study show that chlorophyll a, chlorophyll b and carotenoids content in the excreta of silkworms from 3 crossbreds – 19 x 1014, 1013 x 1014 and Super 1x Xeca 2 can be successfully determined by direct spectral analysis within the range 900–1700 nm. The obtained correlation coefficients showing the relation between the spectral data and the content of the studied parameters are greater than 0.96.

Extremely high accuracy of determining has been obtained in determining the chlorophyll a and carotenoids content. Lower is the accuracy in determining chlorophyll b, which can be accounted for
by the fact that chlorophyll b is more unstable and quickly dissociates after extraction.

References

Review

Fibromelanosis in domestic chickens
H. Lukanov, A. Genchev

Genetics and Breeding

Rumi and IPK Nelina – new cotton varieties
A. Stoilova, Hr. Meluca

Drying of seeds from common wheat (Triticum aestivum L.) by using Silica gel for ex situ storage
P. Chamurlyisky, N. Tsenov, S. Stoyanova

Breeding evaluation of newly stabilized lines of maize
V. Valkova

Apricot breeding for resistance to Sharka
V. Bozhkova, S. Milusheva

Dry matter accumulation in the varieties of wheat (Triticum aestivum L.) according to previous crop
A. Ivanova, N. Tsenov

Reproductive performance of weaning sows after treatment with Fertipig®
S. Dimitrov, G. Bonev

Reproductive performance of Polish Large White and Polish Landrace sows
B. Szostak, V. Katsarov

Nutrition and Physiology

Effect of the feeding of products stimulating the development of bee colonies
R. Shumkova, I. Zhelyazkova

Investigations on kidney function in mulard ducklings with experimental aflatoxicosis
I. Valchev, N. Grozeva, L. Lazarov, D. Kanakov, Ts. Hristov, R. Binev, Y. Nikolov

Rumen fermentation in yearling rams fed different rations
V. Radev

Effect of different lipid and protein dietary levels on rumen ciliate fauna and cellulolytic activity in yearling rams
V. Radev, I. Varlyakov, R. Mihaylov
CONTENTS

Production Systems

Efficacy and selectivity of antibroadleaved herbicides at durum wheat against volunteers of coriander, Clearfield canola, Clearfield sunflower and ExpressSun sunflower
G. Delchev

Investigations on friction coefficients of cow hooves with different dairy farm floor types
T. Penev, Z. Manolov, I. Borissov, V. Dimova, Tch. Miteva, Y. Mitev, V. Kirov

Productivity of irrigation cotton cultivated under different inter-row spaces
I. Saldzhiev, A. Muhova

Stability evaluation of mixtures among preparations with different biological effect on the basis of grain yield in spring vetch
G. Delchev, N. Georgieva, I. Nikolova

Biological activity of plant protection products against *Tuta absoluta* (Meyrick) in tomato grown in greenhouses
N. Valchev, V. Yankova, D. Markova

Agriculture and Environment

Changes of some agro-chemical parameters of *Pellic Vertisol* (FAO) soil type in growing cereal crops under organic system of agriculture
V. Koteva

Product Quality and Safety

Carcass composition and meat quality in lambs reared indoors and on pasture
T. Popova, P. Marinova

Fatty acids and lipid indices of buffalo milk yogurt
N. Naydenova, T. Iliev, G. Mihaylova

Effect of supplementary honey and artificial sugar feeding of bees on the composition of royal jelly
R. Balkanska, I. Zhelyazkova, M. Ignatova, B. Kashamov

Influence of the amount of milk clotting enzyme with microbial and camel origin on the coagulation time of cow's milk
P. Panayotov, K. Yoanidu, P. Boyanova, B. Milenkov

Determining chlorophyll and carotenoid content in *Bombyx mori* L. excreta by Near Infrared Spectroscopy
S. Atanasova, M. Panayotov, D. Pavlov, M. Duleva

Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusions: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Anderson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Thesis:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Thesis:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Ethics

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.
