Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscript written in English should be submitted as MS-Word file attachments via e-mail to ascitech@uni-sz.bg. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website http://www.uni-sz.bg/ascitech/index.html and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate one author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

Subscriptions

Agricultural Science and Technology is published four times a year. The subscription price for institutions is 80 € and for personal subscription 30 € which include electronic access and delivery. Subscription run for full calendar year. Orders, which must be accompanied by payment may be sent direct to the publisher:

Trakia University
Faculty of Agriculture, Bank account: UniCredit Bulbank,
Sofia BIC: UNCRBGSF
IBAN: BG29UNCR76303100117681
With UniCredit Bulbank Stara Zagora

Internet Access

This journal is included in the Trakia University Journals online Service which can be found at www.uni-sz.bg.

Copyright

All rights reserved. No part of this publications may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying or any information storage and retrieval system without permission in writing from the publisher.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330
+359 42 699446
http://www.uni-sz.bg/ascitech/index.html

Technical Assistance:
Nely Tzvetanova
Telephone.: +359 42 699446
E-mail: ascitech@uni-sz.bg
HIGH TECHNOLOGICAL & COST EFFECTIVE SOLUTIONS FOR FOOD INDUSTRY

EKOMIC®
Ultrasonic milk analyzers

EKOSCOPE
Automated somatic cells counting system

PH METER
Device for measuring pH

EKOMIC SCAN
Somatic Cells analyzer

ALKOTEST
Ultrasonic alcohol analyzer

ELECTRONIC EUBULLIOMETER
Ethyl alcohol analyzer in wine

BULTEH 2000 Ltd.
Industrial Area,
VEREA PLAST building
Stara Zagora, BULGARIA
Tel./Fax:(+359 42) 625019
Tel.:(+359 42) 620896
e-mail: bulteh@sz.inet.bg

ISO 9001:2000

www.bulteh.com
Complement activity in Bulgarian local sheep related to season and breed

1Department of Animal Husbandry, Genetics unit, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
2Animal Husbandry, Institute of Mountain Animal Stockbreeding and Agriculture, 5600 Troyan, Bulgaria
3Animal Husbandry, Agricultural Institute, 8400 Karnobat, Bulgaria

Abstract. The studies were performed in 2008 on 308 sheep at the age of 2-4 years. Sheep from the following breeds were used: Karakachan, Tsigay, Replyan, Panagyurishte, Copper-red Shoumen, Karnobat, Pleven Blackhead, White Maritsa, Patch-faced Maritsa, Stara Zagora and Romanov. During the spring and summer, 6 sheep from each breed were used and during the summer – 20. The activity of the alternative pathway of complement activation was assayed by the method of Sotirov (1991). During the spring, the highest blood complement concentrations were determined in Panagyurishte (215.24 ± 5.22), White Maritsa (206.87 ± 13.12) and Copper-red Shoumen breeds (201.15 ± 8.88), and the lowest in Romanov (160.23 ± 7.44) and Pleven Blackhead breed – 164.09 ± 12.86 (р < 0.01). The highest summer complement levels were measured in Panagyurishte breed (218.80 ± 3.285 СН50), and the lowest - in Tsigay breed (167.144 ± 5.233 СН50) (р < 0.01). During the autumn, Karakachan breed were with the highest complement concentrations (205.79 ± 13.28), whereas Pleven Blackhead – with the lowest – 169.04 ± 10.10 (р < 0.01). Totally for all sheep studied, the average APCA concentrations were 190.87 ± 5.87 during the spring, 190.028 ± 8.284 СН50 during the summer and 191.24 ± 8.47 during the winter.

Keywords: complement, season, breeds, sheep.

Introduction

The activity of phagocytosis, complement, beta-lysins, interferon and immunoglobulins determine the quality of both natural and specific immune response (Arsov et al., 1979; Ado and Myanek, 1983; Kolivanova, 1987; Buschmann and Kleinschmidt, 1988; Kishko and Ganova, 1989; Zyczko and Zyczko, 1998; Uzonna et al., 1999). They could be used as biological tests for evaluation of systemic immune status.

The system of complement is an essential part of the mechanisms of resistance. It is a multicomponent biochemical system consisting of plasma proteins that interact between each other in a cascade, providing a rapid and aggressive response. These proteins are covalently bound to the surface of microorganisms and destroy them. The complement system could be activated by either the carbohydrate microbial structures in the absence of antibodies or by antibodies, attached to microbial cells. Thus, it plays the role of a bridge between the innate and adaptive immune responses (Andonova and Gundasheva, 2007). The complement executes a variety of defense functions, resulting in destruction (lysis) of erythrocytes, bacterial cells, viruses, virus-infected cells, neoplastic cells etc. (Lie, 1985; Tanchev, 2006). It is also able to induce important biological reactions as agglutination, precipitation, phagocytosis and binding of C component, i.e. it has functional characteristics similar to those of immunoglobulins (Muller, 1983; Emelyanko, 1985; Kulberg, 1985).

The normal activities of complement related to the species, breed, age, season and the physiological state are reported for cattle (Emelyanenko, 1977; Bodjagin and Loushnikov, 1979; Sotirov et al., 2007), swine (Canfield, 1963; Canfield and Liu, 1965; Campbell et al., 1970; Burger et al., 1983; Sotirov, 1991; Sotirov et al., 1993; Tanchev, 2006), rabbits (Chernov and Boychew, 1992; Tanchev, 2006), sheep (Bivolarski and Sotirov, 2001; Sotirov et al., 2005; Sotirov, 2006), goats (Semerdjiev et al., 2008), and poultry (Semerdjiev, 1989; Sotirov et al., 1989).

Because of the scarce information in available literature, the aim of this investigation was to study the seasonal and breed-related particularities of blood complement in local sheep breeds reared in different regions in Bulgaria.

Material and methods

The studies were performed in 2008 on 308 sheep at the age of 2-4 years. Sheep from the following breeds were used: Karakachan, Tsigay, Replyan, Panagyurishte, Copper-red Shoumen, Karnobat, Pleven Blackhead, White Maritsa, Patch-faced Maritsa, Stara Zagora and Romanov. During the spring and summer, 6 sheep from each breed were used and during the summer – 20. The animals were owned by the Institute of Mountain Animal Stockbreeding and Agriculture, Troyan, the Agricultural Institutes in Karnobat and Shoumen, the Experimental Farm of the Trakia University Stara Zagora and private farmers from Chiparan, Saedinenie, Vidin and Panagyurishte. Blood for analysis was aseptically obtained from v. jugularis with individual needles after proper fixation of animals. The activity of the alternative pathway of complement activation (APCA) was assayed by the method of Sotirov (1991). Data were processed by one-way analysis of variance (ANOVA) with fixed effects of the factor. The effects of breed and age upon the resulting trait (APCA activity) were studied in sheep. The linear model of analysis was as follows:

\[y_{ij} = \mu + \alpha_i + \epsilon_{ij} \]

where

\[y_{ij} \] – values of the trait for the different variants;
\[\mu \] – values of the trait for the different variants;
\[\alpha_i \] – differential effects of the factor age or breed upon the
analyzed trait;
\(\varepsilon_{ij} \) – random error.

Results

Seasonal blood APCA values in the different sheep breeds are presented in Figure 1. During the spring, the highest blood complement concentrations were measured in Panagyurishte breed (215.24 ± 5.22), White Maritsa (208.87 ± 13.12) and Copper-red Shoumen breed (201.15 ± 8.88), and the lowest – in Romanov (160.23 ± 7.44) and Pleven Blackhead breed (164.09 ± 12.86) \((p < 0.01)\). Similar APCA values were obtained for Karnobat breed (190.76 ± 7.50), Tsigay (187.79 ± 11.65), Patch-faced Maritsa

(183.41 ± 8.20), Stara Zagora breed (181.75 ± 4.50) and Replyan sheep breeds (180.06 ± 13.71 CH50) (CH50 units correspond to 50% of complement-induced haemolysis of applied erythrocytes).

Phenotype variety in complement levels was also observed during the summer. The highest complement concentrations were exhibited by Panagyurishte sheep (218,801 ± 3,285 CH50), whereas the lowest – by Tsigay sheep (167,144 ± 5,233 CH50) \((p < 0.01)\). The values for the other studied breeds were between these values: for White Maritsa – 203,928 ± 8,284 CH50; Patch-faced Maritsa – 192,961 ± 4,934 CH50; Stara Zagora – 181,734 ± 5,681 CH50; Copper-red Shoumen – 192,364 ± 3,313 CH50; Pleven Blackhead – 191,734 ± 5,681 CH50; Replyan – 181,751 ± 7,080 CH50; Karnobat – 181,398 ± 5,085 CH50; Karakachan – 177,435 ± 4,082 CH50.

The highest autumn complement was observed in Karakachan sheep, values increased throughout the year, in Tsigay they decreased during the summer and increased in autumn. Replyan and Panagyurishte breeds marked a summer increase in complement, Copper-red Shoumen showed the highest concentrations in spring, Pleven Blackhead sheep exhibited an increase in summer and then reduction in autumn, White Maritsa showed a decrease in summer vs increase in Patch-faced Maritsa. Blood complement in Stara Zagora sheep increased gradually over the seasons whereas in Romanov breed – during the autumn.

![Figure 1. Seasonal and breed-related particularities of blood complement activity (CH50) in local sheep breeds](image_url)
Discussion

The differences in blood complement of sheep from different breeds are possibly a consequence of immune system adaptation to environmental conditions in the dwelling areas and the local antigens. Being descendants to old Karakachan and Tsigay sheep, contemporary sheep carry at a various extent hereditary information of their progenitors that could be partly responsible for the different complement activity, but is probably also related to their production type as well as to environmental factors such as ambient temperature, humidity, altitude, pasture sward, soil type, air and water status, etc.

As seen from the results, the breed as an independent factor has a high statistically significant effect upon APCA blood activity. It therefore implies the existence of considerable variations in this element of non-specific immunity in sheep breeds tested. A possible reason is the different genetic potential of sheep breeds with regard to this trait. In previous studies of ours (Sotirov et al., 2006), breed-related differences in complement activity were shown in rams as well. On the average, APCA values in rams were 169.085 ± 2.883 CH50, with a trend towards lowest activity in Karakachan rams (159.258 ± 3.883 CH50), and higher concentrations in Suffolk (163.104 ± 14.837 CH50); Tsigay – 165.260 ± 3.919 CH50; Staroplainska (179.067 ± 9.814 CH50); Chico (182.257 ± 0.50 CH50); Ille de France (183.958 ± 5.241 CH50); Romanov (187.225 ± 7.653 CH50) and Mouton Charolais (203.949 ± 5.544 CH50) breeds. In sheep, Bivolarski and Sotirov (2001) observed increased winter lysozyme activity and higher summer complement concentrations. Therefore, the season had an effect on these parameters. Various blood APCA activities were reported by other authors for different sheep breeds (Audran et al., 1962, Sotirov, 2006), as well as for horses (Sotirov, 2006) and swine (Sotirov, 1991).

In previous research with goats, we concluded that winter complement concentrations were higher in studied Bulgarian breeds and age groups from both genders, compared to respective summer levels. Blood APCA and lysozyme in goats depended on age, breed and gender (Semerdjiev et al., 2006; 2008).

Breed-related differences in complement activities were found in cattle (Sotirov et al., 2007). Wambura et al. (1998) have compared the resistance against ticks of three Zebu breeds (Meru, Mbullu, Iringa Red) and their crosses with Friesian cattle and found out that purebred Zebu were more resistant to parasites than crosses. Purebred Zebu had higher blood complement activity than crossbreds. It was thus assumed that the higher level of complement activity was important for the higher resistance of the three investigated Zebu breeds. This assumption was supported by the statistically significant correlation between parasitaemia rate and the peripheral lymphocyte subpopulations in swine. Zentralblatt f"ur Veterinarmedizin Series B., 35 (3), 230-236.

Breed-related differences in complement activities were reported in cattle by Grizlova et al. (1978). Serum APCA in adult cattle ranged between 25 and 429 CH50, whereas in calves – between 24 and 256 CH50. Similar data were communicated by Renshaw and Everson (1979). Eckblad et al. (1981) observed serum APCA concentrations of 11.6 CH50 in adult cows, in calves – 51.6 CH50, and in colostrum serum – 5.0 CH50.

Breed-related variations in complement activity were reported by Sotirov (2008) in horse as well, whereas in sheep blood lysozyme and complement were also influenced by the temperament and production type of animals.

The research in this field contributes to the detailed elucidation of the effect of complement and other factors of immunity on livestock productivity and resistance as well as on genetic control and phenotype manifestation under the influence of various environmental factors.

Conclusion

During the spring, the highest blood complement concentrations were determined in Panagyurishte, White Manitsa and Copper-red Shoumen breeds, and the lowest – in Romanov and Pleven Blackhead breeds. The highest summer complement levels were measured in Panagyurishte breed and the lowest – in Tsigay breed. During the autumn, Karakachan sheep were with the highest complement concentrations, whereas Pleven Blackhead – with the lowest. Totally for all sheep studied, the average APCA concentrations were 190.87 ± 5.87 during the spring, 190.03 ± 8.28 CH50 during the summer and 191.24 ± 8.47 during the winter.

References

Ado AD and Mayanski AN, 1983. Sovremennoe sostoyanie izucheniya o fagocitose. Immunology, 1, 20-26 (Ru).
Andonova M and Goundasheva D, 2007. Immunology, Kota, Stara Zagora, 38. (Bg).
Bivolarski B and Sotirov L, 2001. Seasonal investigations on some parameters of non-specific resistance in sheep, Bulgarian Journal of Veterinary Medicine, 4, Suppl. 1, 7-12 (Bg).
Chernov D and Boychev K, 1992. Comparative evaluation of some humoral mechanisms of non-specific immunological resistance in rabbits of different breeds and crosses, Genetics and Selection, 25, 1, 62-68 (Bg).
Emeljanenko PA, 1985. Problems of Veterinary Immunology,
A criterion of sufficient information is to be experiments should be described in detail. methods and conditions applied for the chemical analyses, statistical and other Material and methods: hypothesis and goal ? necessitated the research problem, following questions: What is known and but giving the essence of study. should be selected not repeating the title Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study. The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations. The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *. Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph. Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study. The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal? Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results. Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted. Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text. Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader. Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions. References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.) The following order in the reference list is recommended: Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example: Simm G, Lewis RM, Grundy B and Dingwall WS, 2002. Responses to selection for lean growth in sheep. Animal Science, 74, 39-50 Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example: Oldenbroek JK, 1999. Genebanks and the conservation of farm animal genetic resources, Second edition. DLO Institute for Animal Science and Health, Netherlands. Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example: Mauff G, Pulverer G, Operkuch W, Hummel K and Hidden C, 1995. C3-variants and diverse phenotypes of unconverted and converted C3. In: Provides of the Biological Fluids (ed. H. Peters), vol. 22, 143-165, Pergamon Press. Oxford, UK. Todorov N and Mitev J, 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IX International Conference on Production Diseases in Farm Animals, Sept.11 – 14, Berlin, Germany, p. 302 (Abstr.). Thesis: Penkov D, 2008. Estimation of metabolic energy and true digestibility of amino acids of some feeds in experiments with muscus duck (Carina moshata, L). Thesis for DSc. Agrarian University, Plovdiv, 314 pp. The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.
Genetics and Breeding

Effect of age at first calving on the evaluation of breeding potential of dairy cattle and its correlation to test day productivity
Zh. Gergovska, L. Yordanova

Genetic polymorphism of alpha S1-casein gene in Bulgarian sheep breeds
D. Hristova

Non-hormonal synchronization of estrus in West Balkan Mountain sheep
K. Nedelkov, N. Todorov, A. Kolev, T. Marinkov

Complement activity in Bulgarian local sheep related to season and breed

Production Systems

Influence of some growth regulators on energy efficiency of spring pea (Pisum sativum L) cultivated for fresh biomass
N. Georgieva, I. Nikolova, D. Pavlov, T. Zhelyazkova, Y. Naydenova

Theoretical determination of the width of strip for turning when ploughing with a traditional plough in a field with irregular shape
K. Trendafilov

Morphological and productive characteristics of Rhaponticum carthamoides Iljin
A. Dzhurmanski

Quality and Safety

Investigation on stabilization of riboflavin in the presence of cyclodextrins
B. Zhekova, G. Dobrev

Identification of Mastitis Pathogens in Rabbit Milk by Near Infrared Spectroscopy and SIMCA Classification Method
S. Atanassova, D. Prakasam, S. Isloor, R.M. Vasu

Agriculture and Environment

Study of milk composition in sheep of Pleven Blackhead breed

Estimation of total N, total P, pH and electrical conductivity in soil by near-infrared reflectance spectroscopy
M. Todorova, S. Atanassova, H. Lange, D. Pavlov

Correlation between soil characteristics and zinc content in the aboveground biomass of Virginia tobacco
L. Dospatliev

Medicinal plants in Tended Nature Reserve „Atanasovsko ezero”
N. Grozeva, Tch. Miteva, N. Nedyalkova