Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
Anther culture response of winter barley (Hordeum vulgare L.)

B. Dyulgerova*, D. Vulcheva, D. Dimova

Institute of Agriculture, 8400 Karnobat, Bulgaria

Abstract. The potential of anther culture to produce double-haploid lines was evaluated for Bulgarian winter barley (Hordeum vulgare L.) breeding applications. Two 6-row and two 2-row F1 hybrids were studied. Anthers were culture on two different induction media – N6 and MS, both supplemented with 60 g/L maltose, 40 g/L starch, 3 g/L Gelrite. Composition of the culture media, genotype and their interaction showed significant effect on the frequency of responsive anthers and regenerated plants. The response ranged from 1.33 to 60.67 green regenerants per 100 anthers cultured. The number of green plants regenerated on N6 based media was significantly higher than on MS based media in the genotypes – F1 Lambic x KT 287 and F1 PG 4348 x KT 2168. Changes in the composition of the culture media and the identification of responsive genotypes makes anther culture an efficient procedure for Bulgarian barley breeding program.

Keywords: anther culture, doubled haploids, Hordeum vulgare L.

Introduction

After the first protocol for barley anther culture was developed by Clapham (1973), plant breeders paid attention to anther culture and its possible application in breeding. The advantages of anther culture in barley breeding are: shortening the breeding cycle by immediate fixation of homozygosity, increased selection efficiency and allowing the early expression of recessive genes. Numerous doubled haploid lines have been produced and field tested, including some resistant to barley yellow mosaic virus (Foroughi-Wehr and Friedt, 1984; Gheorghe, 2010). Nevertheless, most of the studies have been done using a small number of responsive cultivars which have an extraordinary androgenetic capacity. The use of highly responsive genotypes may adapt the technique to genotypes which are not very useful for practical purposes and restrict the genetic variability available to the breeder (Luckett and Smithard, 1992). In order to prevent that, it is recommended to develop protocols and culture media applicable to a broader spectrum of genotypes.

The objective of this study was to evaluate androgenetic capacity of hybrid genotypes in two culture media for obtaining doubled-haploids for Bulgarian winter barley breeding program.

Material and methods

The work was performed by using F1 PG 4365 x K-99/23-2, PG 4348 x KT 2168, Lambic x KT287, Merian x KT 287 population derived from crosses made at the Institute of Agriculture, Karnobat. Donor plants were grown in the field. Spikes were collected when anthers were in the early-mid and mid-uninucleate stage. They were preselected on the basis of interligule length between the flag and the uppermost leaf. Before removing spikes they were surface-sterilized with an aerosol of 96% ethanol. One or two anthers from the middle floret were detached, stained with 4% acetocarmine and examined under the microscope to check the initial stage.

Anthers were cultured in two different culture media: modified MS (Murashtige and Skoog, 1962) or N6 (Chu, 1981). Both media contained 60 g/L maltose, 40 g/L wheat starch, 3 g/L Gelgite, 2 mg/L naphthaleneacetic acid (NAA) and 1 mg/L 6-benzylaminopurine (BA). Anthers were incubated in the dark, at 25 ± 1°C, for 30 days and the Petri dishes were then transferred to the light (16 h). The frequency of responsive anthers, green and albino plantlets was assessed. Green plantlets were rooted in test tubes containing modified MS medium (Olsen, 1987), with 30 g/L sucrose, 7 g/L agar, and 0.5 mg/L indole-3-acetic acid (IAA).

Plantlets with well-developed roots were transferred to pots containing standard potting mix. Pots were covered with a beaker which was gradually removed until exposing the plants to ambient conditions. Self-fertilization and formation of grains were attained in the greenhouse. Seeds of spontaneously doubled barley plants were collected.

The parameters observed were number of responsive anthers, number of total plants regenerated and number of green and albino plants regenerated per 100 anthers cultured. Statistical analysis was performed using Generalized Linear Model (GLM) procedure in the SPSS. Mean separations were tested by Duncan’s Multiple Range Test at 5% probability level.

Results and discussion

Variance analysis showed a significant effect of culture media and genotype on the frequency of responsive anthers and regenerated plants (Table 1). The effects of the two factors are not independent, which means that genotypes respond differently to the culture medium and both culture media induce different effects depending on the genotype.

Percentage of responsive anthers on MS medium ranged between 7.00 and 51.00%, with an average of 26.17% (Table 2). An average of 38.67% of the anthers cultured on N6 medium were responsive, with a minimum of 5.00% and a maximum of 74.00%. The superiority of N6 medium was statistically significant for 3 of 4 genotypes by the rate of responsive anthers. Only the hybrid F1 PG 4348 x KT 2168 produced a similar number of responding anthers on
cytokinin biosynthesis (Weissman, 1972a, 1972b; Darral and Lörz (1993)

F Lambic x KT 287 – 51.33% on MS media and to Logue et al. (1993), the ability to regenerate a great number of

phenotypes manifested by the two media. The highest rate of responding anthers was manifested by F1 Lambic x KT 287 – 51.33% on MS media and 74.00% on N6 media. The higher plant regeneration rate on N6 media was recorded for two of four hybrids. The frequency of green plants per 100 anthers plated in F1 Lambic x KT 287 was almost 13-fold higher on N6 based medium than on MS based medium – 60.67% on N6 medium compared with 4.67% on MS medium. The F1 hybrid PG 4348 x KT 2168 showed 6.00 in contrast with 3.33 green plants regenerated per 100 anthers for the media N6 and MS, respectively.

Compared with N6, MS medium has a greater amount of total nitrogen and ammonium (Grimes and Hodges, 1990). Modhorst and Lörz (1993) found that the poor development of microspores in media containing just NH4+ or with a high ratio NH4+/NO3- is caused by ammonium toxicity. It is also possible that the effects of the addition of ammonium to the culture medium may be caused by a change in cytokinin biosynthesis (Weissman, 1972a, 1972b; Darral and Wareing, 1981; Mercier and Kerbauy, 1991).

No relationship between rate of anther responded and rate of plant regeneration in some of hybrids was observed. On the medium MS F1 Lambic x KT 287 produced 51.33 responsive anthers and 18.67 total plants per 100 anthers and F1 Merian x KT 287 produced 32.00 responsive anthers and 22.67 total plants per 100 anthers. These results confirm the hypothesis that androgenetic capacity may result from two independent processes: induction and regeneration. These processes are controlled by different genetic mechanisms that may not be present together. The best genotypes are those combining high frequency of induction with a reasonable frequency of regeneration.

The greater capacity of some genotypes to develop green plantlets could be caused by differences in the ratio of green/total plantlets. All hybrids on N6 medium showed higher frequency of green plantlets of the total number of plants regenerated. According to Logue et al. (1993), the ability to regenerate a great number of green plants depends on the reduction of albinism. Knudsen et al. (1989) reported that the proportion of green plants and the total frequency of regeneration are determined by different genetic traits. This explains why regeneration of green plants is rather influenced by the ratio green/albino than by the total frequency of regeneration. According to Knudsen et al. (1989) and Larsen et al. (1991), the proportion of green plants is strongly genotype dependent and has great heritability. Logue et al. (1993) showed that the ratio green/albino remained constant even when donor plants were cultivated under completely different environments.

The two hybrids F1 Merian x KT 287 and F1 Lambic x KT 287, which had a common parent demonstrated different androgenetic potential. According to Larsen et al. (1991) it is common for hybrids to present levels of response equal or superior to their parents. Therefore, the higher androgenetic capacity of F1 Lambic x KT 287 is probably due to the cultivar Lambic.

In our study the frequency of spontaneous diploids was 72.67%. This result confirmed that barley anther culture usually shows a high percentage of spontaneous doubling of the chromosomes making it unnecessary to treat plants with colchicine in order to obtain doubled haploids (Foroughi-Wehr and Friedt, 1981; Foroughi-Wehr and Friedt, 1989; Forget and Friedt, 1984; Olsen, 1987; Luckett and Smithard, 1992). A total of 117 doubled haploid lines were obtained from different crosses. These lines set seed and were multiplied for agronomic testing in the field.

The efficiency of the anther culture method is largely dependent on plant genotype and cultivation conditions (Bojanova and Gramatikova, 1996; Jacquier et al., 2006). This usually makes comparison of the work of various laboratories difficult as genotypes, media and culture conditions differ considerably. The results of the current study indicate the importance of considering such

Table 1. Mean square from analysis of variance for frequency of responsive anthers, green and albino plant regenerated per 100 anthers cultured in barley anther culture.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>RA</th>
<th>GP</th>
<th>AP</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>11385.000***</td>
<td>3858.333***</td>
<td>2768.657***</td>
<td>12469.028***</td>
</tr>
<tr>
<td>Culture medium</td>
<td>3125.000***</td>
<td>4400.556***</td>
<td>823.472***</td>
<td>9031.250***</td>
</tr>
<tr>
<td>Genotype X medium</td>
<td>610.926*</td>
<td>3781.286***</td>
<td>816.065***</td>
<td>8085.324***</td>
</tr>
<tr>
<td>Error</td>
<td>160.679</td>
<td>225.802</td>
<td>88.966</td>
<td>346.065</td>
</tr>
</tbody>
</table>

*, ** - significant at p = 0.05 and p = 0.001; RA – percentage of responsive anthers; GP – percentage of green plants regenerated; AP – percentage of albino plants regenerated; TP – percentage of total plants regenerated.

The frequency of regeneration are determined by different genetic traits. The greater capacity of some genotypes to develop green plantlets could be caused by differences in the ratio of green/total plantlets. All hybrids on N6 medium showed higher frequency of green plantlets of the total number of plants regenerated. According to Logue et al. (1993), the ability to regenerate a great number of green plants depends on the reduction of albinism. Knudsen et al. (1989) reported that the proportion of green plants and the total frequency of regeneration are determined by different genetic traits. This explains why regeneration of green plants is rather influenced by the ratio green/albino than by the total frequency of regeneration. According to Knudsen et al. (1989) and Larsen et al. (1991), the proportion of green plants is strongly genotype dependent and has great heritability. Logue et al. (1993) showed that the ratio green/albino remained constant even when donor plants were cultivated under completely different environments.

Table 2. Percentage of responsive anthers, percentage of total, green and albino plant regeneration in F2 hybrids of winter barley

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Media</th>
<th>Responsive anthers, %</th>
<th>Total plant regeneration, %</th>
<th>Green plant regeneration, %</th>
<th>Albino plant regeneration, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2 PG 4365 x K-99/23-2</td>
<td>MS</td>
<td>14.33*</td>
<td>5.00*</td>
<td>1.33*</td>
<td>3.67*</td>
</tr>
<tr>
<td></td>
<td>N6</td>
<td>33.66*</td>
<td>9.67*</td>
<td>3.33*</td>
<td>6.33bc</td>
</tr>
<tr>
<td>F2 PG 4348 x KT 2168</td>
<td>MS</td>
<td>7.00*</td>
<td>4.33*</td>
<td>3.33*</td>
<td>1.00*</td>
</tr>
<tr>
<td></td>
<td>N6</td>
<td>5.00*</td>
<td>7.00*</td>
<td>6.00bc</td>
<td>1.00*</td>
</tr>
<tr>
<td>F2 Lambic x KT 287</td>
<td>MS</td>
<td>51.33*</td>
<td>18.67*</td>
<td>4.67*</td>
<td>14.00*</td>
</tr>
<tr>
<td></td>
<td>N6</td>
<td>74.00*</td>
<td>100.00*</td>
<td>60.67*</td>
<td>39.33*</td>
</tr>
<tr>
<td>F2 Merian x KT 287</td>
<td>MS</td>
<td>32.00*</td>
<td>22.67*</td>
<td>17.33*</td>
<td>5.33bc</td>
</tr>
<tr>
<td></td>
<td>N6</td>
<td>42.00bc</td>
<td>19.00*</td>
<td>16.00*</td>
<td>3.00*</td>
</tr>
</tbody>
</table>

a, b, c, d – Values followed by the same letter in columns do not differ significantly (p < 0.05)
interactions in the development of protocols with locally adopted genotypes and methodology.

According to Luckett and Smithard (1992), a productivity of 10 plants/100 plated anthers allows the production of 100 doubled haploid lines from 50 different crosses by a single worker during one year. In our study using different F1 populations an average of 14.08 and a maximum of 60.67 green plants/100 plated anthers were obtained. These results are similar or superior to those obtained by Finnie et al. (1989), Knudsen et al. (1989), Kühlmann and Foroughi-Wehr (1989), Luckett and Smithard (1992). Obtaining a reasonable number of doubled haploids makes anther culture an useful tool for the Bulgarian barley breeding program.

Conclusion
Composition of the culture media (induction media – N6 and MS), genotype (two 6-row and two 2-row F1 hybrids) and their interaction showed a significant effect on the frequency of responsive anthers and regenerated plants. The number of green plants regenerated on N6 based media was significantly higher than on MS induction media in the genotypes – F1 Lambic x KT 287 and F2 PG 4348 x KT 2168. The response in our study ranged from 1.33 to 60.67 green regenerants per 100 anthers cultured. Changes in the composition of the culture media and the identification of responsive genotypes makes anther culture an efficient procedure for Bulgarian barley breeding program.

References
Selection for linear traits for legs and feet and its significance for dairy cattle breeding
I. Marinov

Morphological analysis of spikes and grouping of accessions of *Triticum turgidum* ssp. *dicoccon*
H. Stoyanov

Crops from *Cucurbitaceae* in collection of the Maritsa Vegetable Crops Research Institute, Plovdiv – local cultivars and their application in breeding programme
N. Velkov, V. Petkova

Study of chickpea seed size heredity (*Cicer arietinum* L.)
R. Sturzu, T. Nistor, F. Bodescu, C. Melucă

Egg quality traits in layers from different production types
H. Lukanov

Evaluation of Bulgarian winter common wheat varieties of yield stability in South Bulgaria
Z. Uhr, G. Rachovska, G. Delchev

Study of opportunities for effective use of varieties from Ukraine for creating early winter wheat lines
N. Tsenov, D. Atanasova, I. Stoeva, E. Tsenova

Anther culture response of Winter Barley (*Hordeum vulgare* L.)
B. Dyulgerova, D. Vulcheva, D. Dimova

Evaluation of grain yield in advanced lines two-rowed winter barley
M. Dimitrova-Doneva, D. Valcheva, D. Vulchev, B. Dyulgerova, M. Gotcheva, T. Popova

Haematology and some serum parameters of broilers fed decorticated fermented *Prosopis africana* seed meal
D. Hassan, N. Yusuf, M. Musa, I. Musa-Azara, R. Barde, D. Ogah, A. Yakubu, M. Ari

Comparative age-related weight and morphometrical investigation of the intraorbital glands in the common bronze turkey (*Meleagris Meleagris Gallopavo*)
D. Dimitrov

Effect of the dietary supplement *Zarnela* on some duodenal chyme parameters in yearling rams
V. Radev, I. Varlyakov, T. Slavov, R. Mihaylov

13. Variations of maize yield and some quality indices of grain depending on the type of main soil tillage
P. Yankov, M. Drumeva, D. Plamenov
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavior, sexual maturity and productive traits in gilts reared under different floor area</td>
<td>187</td>
</tr>
<tr>
<td>M. Kirov, V. Doychev.</td>
<td></td>
</tr>
<tr>
<td>Influence of organic fertilizers Aminobest and Greenfol on the initial stages of growth of wheat (Triticum aestivum L.)</td>
<td>190</td>
</tr>
<tr>
<td>M. Pashev, D. Yakimov, V. Budaeva</td>
<td></td>
</tr>
<tr>
<td>Algorithm for determining the type of turns carried out by the unit in shuttle movement in the field while using precision farming systems</td>
<td>194</td>
</tr>
<tr>
<td>K. Trendafilov</td>
<td></td>
</tr>
<tr>
<td>Correlations between morphological and productive parameters in Burley tobacco</td>
<td>197</td>
</tr>
<tr>
<td>Y. Dyiulgerski, Tz. Radoukova</td>
<td></td>
</tr>
<tr>
<td>Growth and fruiting of the apple sort Braeburn 7926 grafted on M9 Pajam2 and MM106</td>
<td>199</td>
</tr>
<tr>
<td>G. Dobrevska</td>
<td></td>
</tr>
<tr>
<td>Agriculture and Environment</td>
<td></td>
</tr>
<tr>
<td>Theoretical model of biogas production from cattle slurry with different additive of maize silage</td>
<td>202</td>
</tr>
<tr>
<td>K. Peychev, R. Georgiev</td>
<td></td>
</tr>
<tr>
<td>New data about Agaricus (Section Minores, Agaricaceae) in Bulgaria</td>
<td>206</td>
</tr>
<tr>
<td>M. Lacheva, Tz. Radoukova</td>
<td></td>
</tr>
<tr>
<td>Changes of the humus status of Pellic Vertisol (FAO) soil type under long-term growing of field crops in a stationary trial without fertilization</td>
<td>211</td>
</tr>
<tr>
<td>V. Koteva, S. Kostadinova</td>
<td></td>
</tr>
<tr>
<td>Non-fish marine resources and their exploitation along the Bulgarian Black Sea coast</td>
<td>215</td>
</tr>
<tr>
<td>E. Petrova – Pavlova</td>
<td></td>
</tr>
<tr>
<td>Productivity and grass density of the main types of pastures in Sakar and Strandja region</td>
<td>219</td>
</tr>
<tr>
<td>V. Vateva</td>
<td></td>
</tr>
<tr>
<td>Geology and Environment</td>
<td></td>
</tr>
<tr>
<td>Automatic measurement of Loin eye urea with computer vision system</td>
<td>224</td>
</tr>
<tr>
<td>Z. Zlatev, S. Ribarski, M. Mladenov</td>
<td></td>
</tr>
<tr>
<td>Influence of the kinetics of salting for Bulgarian white brined cheese, produced by mechanized and traditional technology on the starter and adjunct microflora during ripening</td>
<td>228</td>
</tr>
<tr>
<td>P. Panayotov, V. Mihailov, D. Rakov</td>
<td></td>
</tr>
<tr>
<td>Effect of season, lactation period and number of lactation on mastitis incidence and milk yields in dairy cows</td>
<td>231</td>
</tr>
<tr>
<td>T. Penev, Zh. Gergovska, I. Marinov, V. Kirov, K. Stankov, Y. Mitev, Ch. Miteva</td>
<td></td>
</tr>
</tbody>
</table>
Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.