Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
Genetics and Breeding

Production potential of new triticale varieties grown in the region of Dobrudzha

A. Ivanova1*, N. Tsenov2

1Dobrudzha Agricultural Institute, 9520 General Toshevo, Bulgaria
2Agronom I Holding, 9300 Dobrich, Bulgaria

Abstract. The production potential of the new triticale varieties Kolont, Accord and Respect were investigated in a three-year field experiment (2009 – 2011) carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo (DAI). The experiment was designed by the split plot method in 4 replications, the size of the trial plot being 12 m². The investigation involved four predecessors – oilseed rape, pea, sunflower and maize, and three fertilization norms according to the type of predecessor. The effect of some agronomy factors: the year conditions, the type of predecessor and the norm of fertilization, on the formation of yield, test weight, and 1000 grain weight of the new triticale varieties was analyzed. It was found that the year conditions and the level of mineral fertilization were the decisive factors for the formation of the yield of these varieties. Test weight was influenced to the highest degree by the year conditions and the genotype. The environment was determining for 1000 grain weight, while the genotype and the fertilization norm of mineral fertilization had similar effect. The new genotypes were responsive to fertilization, the tiered increase of the nitrogen fertilization norm leading to analogous higher productivity. During the years of investigation all three varieties gave high yields; varieties Accord and Respect had the highest test weight, and varieties Kolorit and Accord – the fullest grain with the largest size.

Keywords: triticale, variety, fertilization, predecessor, year

Abbreviations: Yields – grain yield, TestW – test weight, TKW – thousand grain weight

Introduction

Two of the most ancient cereal plants – wheat and rye, which nature provided to humankind as sources of nutrition, differ significantly by their biological and economic properties. The combination of positive traits in a single plant organism, the artificial cereal crop triticale, is a remarkable progress in plant breeding (Kirchev, 2006; Kolev, 2010). Triticale is an intensive and highly productive crop which requires high level of the applied agronomy practices to realize its production potential. The testing of new triticale cultivars under different agro ecological conditions is important for high yield with good quality of grain (Santiveri et al., 2004; Kirchev et al., 2007; Tanchev, 2007; Marton, 2008; Irani et al., 2010).

The aim of the investigation was: 1) to analyze the effect of main agronomy factors on the formation of the production potential of the new triticale genotypes; 2) to present their production potential by levels of the agronomy factors

Material and methods

The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo (DAI) for a three-year period (2008 – 2011). The trial was designed by the split plot method in 4 replications, the size of the trial area being 12 m². The object of investigation was three new triticale cultivars developed at DAI (Baychev, 2006; Baychev and Petrova, 2009, 2011). The investigation involved four predecessors: oilseed rape, pea, sunflower and maize, and three norms of mineral fertilization according to the type of predecessor. Thus the applied norms of mineral fertilization were the following:

- T1 (N P K) – check variant;
- T2 (N P K) after pea and N P K after the other investigated predecessors;
- T3 (N P K) after pea and N P K after the other investigated predecessors;
- T4 (N P K) after pea and N P K after the other investigated predecessors.

The following traits were analyzed: grain yield (t ha⁻¹), test weight (kg), 1000 grain weight (g).

The statistical processing of data was done with the help of Statistica 7.

The meteorological conditions during the years of the experiment (2009 – 2011) were compared to the climatic norm at DAI (1952 – 2011) (Figure 1). In the first year (2008 – 2009), the amount of rainfalls during the entire growing season was lower than the precipitation norm. An exception was observed during the winter months (January) when the crops were dormant; more significant was the deviation in April and July (exceeding the precipitation norm by 17.6 mm and 18.1 mm). The first year of the investigation was warmer in comparison to the long-term period. The measured mean monthly temperatures were higher than the temperature norm. The second year of the investigation (2009 – 2010) differed considerably because the total amount of vegetation rainfalls exceeded by 319.7 mm the mean values of the long-term period. During the entire growing season the amounts of rainfalls were higher than the precipitation norm, with the exception of February, March and June.
The recorded mean monthly temperatures were higher than the temperature norm. In the third year of the experiment (2010–2011) the amounts of rainfalls during the entire growing season were lower (422.9 mm) in comparison to the precipitation norm (439.4 mm). There were high variations of the meteorological conditions at the beginning of the growing season as compared to the climatic norm. Immediately before planting in October, the rainfalls were abundant (exceeding the precipitation norm by 18.0 mm), and the recorded mean monthly temperature was 2°C lower than the temperature norm. November was drier, with rainfalls 20.7 mm below the precipitation norm but the mean monthly temperature was very high (5.9°C higher than the temperature norm). The tendency during April–May was also different: the recorded mean monthly temperature was with almost a degree lower, and in July, when triticale is harvested, the temperature was 1.9°C higher than the norm. On the whole, variable conditions for growth and development of triticale were observed in all three years of the investigation.

![Figure 1. Meteorological conditions](image)

Results

The analysis of variances showed significant effects of the agronomy factors on the investigated traits, both independent and resulting from their interactions (Table 1). The year conditions had the strongest effect on the test weight of the new triticale cultivars (20%) and considerable effect on the formation of their yield (46%).

![Graph](image)

The meteorological conditions influenced to a very low degree the yield of the new triticale cultivars (22%). The role of the genotype was markedly expressed on the traits test weight (13%) and absolute weight (10%). According to the multifactor analysis, the type of predecessor had lower effect on the investigated indices, although its role was resulting from their interactions (Table 1). The year conditions had lower effect on the investigated indices, although its role was resulting from their interactions (Table 1). The year conditions had lower effect on the investigated indices, although its role was resulting from their interactions (Table 1). The year conditions had lower effect on the investigated indices, although its role was resulting from their interactions (Table 1). The year conditions had lower effect on the investigated indices, although its role was resulting from their interactions (Table 1).

Table 1. Anova of investigated factors

<table>
<thead>
<tr>
<th>Source</th>
<th>Yields</th>
<th>TestW</th>
<th>TKW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS</td>
<td>%</td>
<td>SS</td>
</tr>
<tr>
<td>Corrected Model</td>
<td>592.669</td>
<td>0.00</td>
<td>3357.593</td>
</tr>
<tr>
<td>{1} Year</td>
<td>270.951</td>
<td>0.00</td>
<td>2688.791</td>
</tr>
<tr>
<td>{2} Variety</td>
<td>1.713</td>
<td>0.00</td>
<td>445.312</td>
</tr>
<tr>
<td>{3} Predecessor</td>
<td>37.725</td>
<td>0.00</td>
<td>11.349</td>
</tr>
<tr>
<td>{4} Fertilization</td>
<td>101.303</td>
<td>0.00</td>
<td>116.480</td>
</tr>
<tr>
<td>1'2</td>
<td>7.496</td>
<td>0.00</td>
<td>13.465</td>
</tr>
<tr>
<td>1'3</td>
<td>93.866</td>
<td>0.00</td>
<td>7.358</td>
</tr>
<tr>
<td>2'3</td>
<td>0.499</td>
<td>0.703</td>
<td>1.313</td>
</tr>
<tr>
<td>1'4</td>
<td>13.418</td>
<td>0.00</td>
<td>11.344</td>
</tr>
<tr>
<td>2'4</td>
<td>17.698</td>
<td>0.00</td>
<td>12.907</td>
</tr>
<tr>
<td>3'4</td>
<td>17.715</td>
<td>0.00</td>
<td>13.618</td>
</tr>
<tr>
<td>1'2'3</td>
<td>0.891</td>
<td>0.870</td>
<td>6.889</td>
</tr>
<tr>
<td>1'2'4</td>
<td>8.566</td>
<td>0.00</td>
<td>10.702</td>
</tr>
<tr>
<td>1'3'4</td>
<td>18.150</td>
<td>0.00</td>
<td>8.389</td>
</tr>
<tr>
<td>2'3'4</td>
<td>1.174</td>
<td>0.961</td>
<td>3.417</td>
</tr>
<tr>
<td>1'2'3'4</td>
<td>1.505</td>
<td>1.00</td>
<td>6.258</td>
</tr>
<tr>
<td>Error</td>
<td>26.263</td>
<td>9.920</td>
<td>50.158</td>
</tr>
</tbody>
</table>
the 1000 grain weight (13%), but its effect was insignificant on test weight (3.5%). Among the combined interactions, that of year x predecessor (1*3) was the most significant for the formation of the yield from triticale (16%). The other interactions had low effect on the trait and some of them were not significant. All combined interactions between the agronomy factors were significant for the traits test weight and 1000 grain weight, although their percent was low. The triple combination year x genotype x fertilization (1*2*4) is worth mentioning for its effect on 1000 grain weight (12%). The combined interactions between the agronomy factors had the highest effect on 1000 grain weight as compared to the rest of the traits. Similar results have been presented in our previous publications related to the investigation of these traits in the other winter cereal crops – common wheat (Ivanova et al., 2007; Ivanova and Tsenov, 2009), durum wheat (Ivanova and Tsenov, 2010) and barley (Ivanova and Mihova, 2012).

Discussion

In the recent years the Official Varietal List of Bulgaria has been enriched with many new triticale varieties (Baychev, 2006; Baychev and Petrova, 2009, 2011), which can to a high degree help to increase agricultural production (Baychev, 2012). One of triticale’s main and most important advantages is its higher production potential in comparison to the other cereals (Kirchev et al., 2012). The production potentials of the investigated genotypes are given by levels of the agronomy factors (Figures 2, 3 and 4). The year conditions caused variable expression of the production potential of the new triticale cultivars (Figure 2). The cultivars formed lower yields during harvest year 2009, while in 2011 the yields were maximal. The variations between the years were greater than the differences between the cultivars. Thus the variations in the obtained yields were from 5.5 t.ha\(^{-1}\) in cultivar Respect to 5.9 t.ha\(^{-1}\) in cultivar Kolorit during 2009, while in 2011 they reached 8.1 t.ha\(^{-1}\) in cultivar Accord. The values of test weight were the lowest in 2010, the year with very high precipitation, especially before harvesting. In all three years cultivars Accord and Respect had higher values of this index than cultivar Kolorit. A thousand grain weight characterizes grain size. In all three years of the experiment cultivar Kolorit had the fullest grain. Harvest year 2011 was the most favorable for the expression of the production potentials of the new triticale cultivars. They formed high yields with similar values; cultivars Accord and Respect had the highest test weight, and cultivar Kolorit – the largest and fullest grain.

The new triticale cultivars demonstrated variable production potential depending on the type of predecessor (Figure 3). After the legume predecessor, cultivar Accord gave the highest mean yield of 7.6 t.ha\(^{-1}\). After the other predecessors (oilseed rape, sunflower and maize), the genotypes Kolorit and Respect formed significantly higher yields. The test weight of cultivars Accord and Respect was much higher after all predecessors in comparison to cultivar Kolorit. The variation of values was not high: from 70.9 kg to 71.2 kg. A thousand grain weight of cultivar Kolorit and Accord was higher after all predecessors, the values being greater after oilseed rape and pea. Averaged for all predecessors, cultivars Kolorit and

![Figure 2](image_url) Yields, TestW and TKW of the investigated cultivars over years

![Figure 3](image_url) Yields, TestW and TKW of the investigated cultivars according to predecessors
Respect formed the highest grain yield, cultivars Accord and Respect had maximum test weight, and cultivars Kolorit and Accord – the largest and fullest grain.

Fertilization is a significant and dynamic part of the growing technology. The applied norms of mineral fertilization had multidirectional effect on the production potential of the new triticale cultivars (Figure 4). Naturally, the check variants (T1) gave the lowest grain yield. The applied tiered increase of the nitrogen norm caused tiered increase of productivity in cultivars Kolorit and Accord to the last fertilizer level. In cultivar Respect similar increase of productivity was observed, but in this case the high fertilizer norm maintained it at the same level; maximum yield was obtained from the check variants even without fertilization. Test weight was the highest in the variants without fertilization and decreased after the applied mineral fertilization. Cultivars Accord and Respect had the highest values of this trait. A thousand grain weight was also the highest in the check variants, decreasing in the fertilizer variants. Cultivars Kolorit and Accord were with the highest values of this index. In the variants without fertilization the highest yields were obtained from cultivar Respect. The use of mineral fertilization increased the productivity of the investigated triticale cultivars, the variations between them being not very high. Cultivars Accord and Respect had the highest test weight, and Kolorit and Accord were with the largest and fullest grain.

Conclusions

The year conditions and the level of mineral fertilization were decisive factors for the formation of yield from the new triticale cultivars. Test weight was most affected by the year conditions and the genotype. The environment was determining for 1000 grain weight, and the genotype and the mineral fertilization norm were with similar effects.

The new genotypes demonstrated excellent responsiveness to fertilization, the tiered increase of the nitrogen norm leading to increase of productivity. During the years of the investigation all three cultivars gave high yields, cultivars Accord and Respect had the highest test weight, and Kolorit and Accord – the largest and fullest grain.

References

Kirchev H, 2006. Investigation on the biological and economic properties of new triticale cultivars a according to the agro ecological conditions and the mineral fertilization. Thesis for PhD, Agricultural University Plovdiv (Bg).
Kirchev H, Terziev Zh and Tonev TK, 2007. Biological yield formation in different triticale varieties under the conditions of nitrogen deficit. Field Crops Studies, 4, 293-298 (Bg).
Kolev T, 2010. Testing of some new Bulgarian triticale varieties for grain. Plant Science, 47, 14-16 (Bg).
Marten L, 2008. Impact of Rainfall, Liming, Nitrogen (N), Phosphorus (P2O5), Potassium (K2O), Calcium (CaO), Magnesium (MgO) Mineral Fertilization on Triticale (× Triticosecale Wittmack) Yield in a Monoculture in Hungary. Cereal Research Communications, 36, 333-341.
Tanchev D., 2007. Comparative testing of grain triticale cultivars under the conditions of Strandza region. Journal of Mountain Agriculture on the Balkans, 10, 491-498 (Bg).
Genetics and Breeding

Production potential of new triticale varieties grown in the region of Dobrudzha
A. Ivanova, N. Tsenov

Resistance of Bulgarian tomato varieties to the races of *Xanthomonas vesicatoria*
K. Aleksandrova, D. Ganeva, N. Bogatzevska

Evaluation of the combining ability for yield of grain of middle early maize lines
V. Valkova, N. Petrovska

Nutrition and Physiology

Effects of aflatoxin B1 on production traits, humoral immune response and immunocompetent organs in broiler chickens
I. Valchev, I. Zarkov, N. Grozeva, Y. Nikolov

Effect of linseed and sunflower oil supplementation in the diet on the growth performance in carp (*Cyprinus carpio* L.), cultivated in recirculating system
G. Zhelyazkov, Y. Staykov, G. Nikolov

Pharmacokinetics of some inorganic and organic zinc compounds in broiler chickens
S. Ivanova, D. Dimitrova, M. Petrichev, L. Parvanova, G. Kalistratov, L. Vezenkov

Seasonal changes in fatty acid composition and fat soluble vitamins content of grass carp and common carp
D. Dobreva, A. Merdzhanova, L. Makedonski, M. Stancheva

Effect of herd and number of lactation on milking temperament score in Black-and-White cows
I. Marinov, I. Slaveva, Zh. Gergovska

Effects of different dietary nitrogen sources on duodenal chyme parameters in yearling sheep
T. Slavov, V. Radev, R. Mihaylov, I. Varlyakov

Production Systems

Growing of common carp fingerlings in net cages at different stoking densities
Y. Staykov, S. Stoyanova

Cold and winter resistances of different oilseed canola hybrids and possibilities for reseeding of damaged by frost crops
G. Delchev

Efficiency and selectivity of some herbicides on winter oilseed rape
M. Dimitrova, I. Zhalnov, D. Stoychev

Effect of the date of application of a set of herbicides in common winter wheat crops on weed infestation
Z. Petrova, G. Sabev

Influence of the wooden filings on some soil indicators of the apple plant in a stoolbed
R. Popova, G. Dobrevska, H. Djugalov, A. Matev, L. Dospatliev, A. Stoyanova
Effect of the length of the interstock on the growth and reproductive aspects of sweet cherry cultivar Biggareau Burlat
P. Kaymakanov

Soil acidity and content of the available N, P and K in the region of south Dobrudzha
M. Nankova, I. Iliev, N. Nankov, G. Milev

Efficacy and selectivity of herbicides and herbicide combinations at winter oilseed canola, grown by conventional and Clearfield technologies
G. Delchev

Influence of the methods of propagation on persimmon fruit tree producing
A. Yordanov, S. Tabakov, G. Dobrevska

Agriculture and Environment

Agroecological assessment of wastewater and sludge from Municipal Wastewater Treatment Plant by content nutrient inputs
G. Kostadinova, D. Dermendjiev, G. Petkov, J. Gotchev

Evaluation of porcine claw horn health
T. Penev, V. Katsarov

Effect of different nitrogen sources on growth of microalgae Chlorella vulgaris cultivation in aquaculture wastewater
K. Velichkova

Vertical distribution of foliar pathogens on wheat
R. Rodeva, Z. Stoyanova, S. Nedyalkova, M. Pastirčák, M. Hudcovicova

Septoria/Stagonospora diseases of durum wheat (Triticum durum) in Bulgaria
R. Rodeva, S. Nedyalkova, Z. Stoyanova

Product Quality and Safety

Fatty acids profile, atherogenic and thrombogenic health indices of white brined cheese made from buffalo milk
N. Naydenova, I. Kaishev, T. Iliev, G. Mihaylova

Influence of the temperature for distillation on the yield and quality of the Rosa alba L. essential oil
A. Dobreva

Fatty acid composition of backfat during frozen storage in pigs fed vitamin E supplemented diet
T. Popova

Toxic and essential metal concentration of freshwater fishes from Pyasachnik Dam, Bulgaria
K. Peycheva, V. Panayotova, I. Makedonski, M. Stancheva

Morphological, reproductive manifestations and chemical composition of tomato varieties for greenhouse production
N. Valchev, G. Pevicharova
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, then co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

- Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

- Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

- Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods".