Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence.

They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committe on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU.

The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student’s campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editor-in-Chief
Tsanko Yablanski
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Co-Editor-in-Chief
Radoslav Slavov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections

Genetics and Breeding
Atanas Atanasov (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothschild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Bojin Bojinov (Bulgaria)
Stoicho Metodiev (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Zervas Georgios (Greece)
Ivan Varlyakov (Bulgaria)

Production Systems
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Dimitar Panaioitov (Bulgaria)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Georgi Petkov (Bulgaria)
Ramesh Kanwar (USA)
Martin Banov (Bulgaria)

Product Quality and Safety
Marin Kabakchiev (Bulgaria)
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)

English Editor
Yanka Ivanova (Bulgaria)
Effect of the length of the interstock on the growth and reproductive aspects of sweet cherry cultivar Biggareau Burlat

P. Kaymakanov*

Department of Fruit Growing, Faculty of Viticulture and Horticulture, Agricultural University Plovdiv, 12 Mendeleev, 4000 Plovdiv, Bulgaria

Abstract. In the period 2012 - 2013 the influence of 3 interstocks on growth and fruit bearing of the sweet cherry cultivar Biggareau Burlat grafted on Prunus mahaleb L. – P1 seedling rootstock was tested. As interstocks were used Gisela 5, the sour cherry cultivar North Star and the Hybrid 2/10, each of them with length 10 and 30 cm. The trees were planted in March 2006 with planting distance 6.0 x 4.5 m and were grown without irrigation and training. The sweet cherry cultivar Stella which was planted in adjacent rows was used for pollination of Biggareau Burlat. It was established that under the influence of the longer interstock the trunk size was reduced in the area of the rootstock and the interstock itself. The trunk size was bigger in the area of the scion. The differences were more pronounced where Gisela 5 was used. The longer interstock induced weaker growth of the trees grafted on Gisela 5 and reduced the crown volume. The trees with the longer interstock have larger number of blossoms per linear metre of two-year-old wood, but with lower percent of fruit set. Despite the lower fruit set the trees with the longer interstock have higher cumulative yield compared to the crown volume and the differences to Gisela 5 are proved.

Keywords: interstocks, cherry, growth, yield

Introduction

Cherry fruit production in Bulgaria is almost of an extensive type, with the use of vigorous rootstocks. Under the influence of those rootstocks the trees go later in fruit bearing – in the 4th to 6th year after planting (Baumann, 1994; Balmer, 1996; Lang, 2001) and reach heights of 8 – 10 m, which complicates fruit picking (Perry, 1987; Lang, 2000, 2001). Many research teams throughout the world are trying to solve those problems, their work is aimed in many different directions, one of which is the use of dwarfing interstocks. This was the subject of studies done by teams in Bulgaria (Koleva, 2001; Lichev et al., 2012) and abroad (Hrotko and Simon, 1996; Grzyb et al., 2004), also with different lengths of the interstock. According to Gersbach (1975), increasing the length of the interstock reduces the growth of the scion. As we had a research field available in which along with the controls (trees only with rootstock and scion), trees with different interstock lengths were tested, we set as our goal to research more thoroughly the effects of the interstock length on the growth and fruit bearing of one standard sweet cherry cultivar. The first results from our work were published earlier (Lichev et al., 2012), and in this article we present the results from the 7th and 8th vegetation after planting.

Material and methods

The studies were held during the 2012 – 2013 period at the educational and experimental field of the Agricultural University of Plovdiv. According to Pepelyankov et al. (1998), the soil in the experimental field is Chromic cambisols. The experimental trees are of sweet cherry cultivar Biggareau Burlat with rootstock Prunus mahaleb L. - P1. For interstocks (with length of 10 and 30 cm) were used shoots of Gisela 5, Prunus cerasus North star and the 2/10 hybrid (obtained at the Agricultural University of Plovdiv by crossbreeding Gisela 5 and Prunus mahaleb – P1). The trees (in 7 replications per variant in a random block design) were planted in March 2006 with planting distance 6.0 x 4.5 m, grown without irrigation and training. The sweet cherry cultivar Stella which was planted in adjacent rows was used for pollination of Biggareau Burlat. The trees were pruned at 90 cm height above the ground and after that were left without training to express their vegetative and reproductive characteristics. The obtained data were processed statistically by dispersion analysis.

Results and discussion

By the end of 2013, with all three tested interstocks (Gisela 5, North star and Hybrid 2/10), the trees with short interstock have thicker trunks (in the rootstock area), than those with longer interstock, but the differences are insignificant (Table 1). As for the thickness of the interstock, with the increase of the length their thickness is decreasing. The opposite tendency is observed for the scion thickness – with the increase of the length of the interstock its thickness decreases. The differences were more pronounced where Gisela 5 was used. The more intensive growth at the basis of the scion of the trees with longer interstock can be caused by difficulties in the assimilate flow from the scion to the root system which results in thicker trunks in this area.

Table 2 contains data about the size of the trees by the end of 2013. The height of the trees with Gisela 5 and Hybrid 2/10 was not influenced by the length of the interstock. Only where North star was used the longer interstock resulted in reduced height. Regarding the crown spread, the size is decreasing under the influence of the longer interstock; this is statistically proved where Gisela 5 was used. This results in considerably smaller crown volume of the trees grafted on Gisela 5 as opposed to the other variants in which the influence of the length of the interstock is negligible. In 2013 the trees grafted on North star showed signs of delayed incompatibility with the cultivar Biggareau Burlat, expressed by too weak vegetative growth.
growth, gum exudate and decay, so it should be noted that we cannot make categorical conclusions based on the results from the biometrical measurements from this variant. Reduced growth of the trees with North star interstock is reported during the 5th and 6th vegetation (Lichev et al., 2012). Incompatibility between the North star interstock and the grafted sweet cherry cultivar Biggareau Burlat is also observed by other authors (Rozpara et al., 2011).

In Table 3 the data about the number of blossoms per linear meter of two-year-old tree and the percentage of fruit set is presented. The data shows that with all three interstocks (Gisela 5, North star, Hybrid 2/10) the trees with the longer length of the interstock have larger number of blossoms than the ones with shorter interstock and in some cases the differences are statistically proved. In 2012 the meteorological conditions for pollination and fertilization during the first ten days of April, when the flowering phenophase mainly takes place, were very unfavorable. The almost daily precipitation resulted in very poor fruit set in all of the tested variants. Despite of the poor fruit set, the trees with longer interstocks had even lower percent of fruit set, although the differences were not significant. In 2013 the fruit set was

Table 1. Trunk size of the trees, grafted on interstocks with different length

<table>
<thead>
<tr>
<th>Variant</th>
<th>Diameter, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rootstock</td>
</tr>
<tr>
<td>Gisela 5 – short interstock</td>
<td>15.37</td>
</tr>
<tr>
<td>Gisela 5 – long interstock</td>
<td>14.55</td>
</tr>
<tr>
<td>North star – short interstock</td>
<td>16.19</td>
</tr>
<tr>
<td>North star – long interstock</td>
<td>16.08</td>
</tr>
<tr>
<td>Hybrid 2/10 – short interstock</td>
<td>17.03</td>
</tr>
<tr>
<td>Hybrid 2/10 – long interstock</td>
<td>16.12</td>
</tr>
<tr>
<td>GD P=5%</td>
<td>1.30</td>
</tr>
<tr>
<td>GD P=1%</td>
<td>1.75</td>
</tr>
<tr>
<td>GD P=0.1%</td>
<td>2.32</td>
</tr>
</tbody>
</table>

Table 2. Size of the trees, grafted on interstocks with different lengths by the end of 2013

<table>
<thead>
<tr>
<th>Variant</th>
<th>Tree height, m</th>
<th>Crown spread, m</th>
<th>Crown volume, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gisela 5 – short interstock</td>
<td>5.09</td>
<td>3.69</td>
<td>15.99</td>
</tr>
<tr>
<td>Gisela 5 – long interstock</td>
<td>5.09</td>
<td>3.09</td>
<td>10.93</td>
</tr>
<tr>
<td>North star – short interstock</td>
<td>5.05</td>
<td>3.46</td>
<td>14.10</td>
</tr>
<tr>
<td>North star – long interstock</td>
<td>4.55</td>
<td>3.6</td>
<td>14.45</td>
</tr>
<tr>
<td>Hybrid 2/10 – short interstock</td>
<td>5.08</td>
<td>3.70</td>
<td>16.15</td>
</tr>
<tr>
<td>Hybrid 2/10 – long interstock</td>
<td>5.00</td>
<td>3.46</td>
<td>14.21</td>
</tr>
<tr>
<td>GD P=5%</td>
<td>0.28</td>
<td>0.38</td>
<td>3.84</td>
</tr>
<tr>
<td>GD P=1%</td>
<td>0.38</td>
<td>0.51</td>
<td>5.17</td>
</tr>
<tr>
<td>GD P=0.1%</td>
<td>0.51</td>
<td>0.67</td>
<td>6.85</td>
</tr>
</tbody>
</table>

Table 3. Some reproductive aspects of the trees, grafted on interstocks with different length in the period 2012 – 2013

<table>
<thead>
<tr>
<th>Variants</th>
<th>Number of blossoms per linear metre</th>
<th>Percent fruit set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>2013</td>
</tr>
<tr>
<td>Hybrid 2/10 - short interstock</td>
<td>34.53</td>
<td>105.03</td>
</tr>
<tr>
<td>GD P=5%</td>
<td>46.91</td>
<td>35.39</td>
</tr>
<tr>
<td>GD P=1%</td>
<td>63.17</td>
<td>47.67</td>
</tr>
<tr>
<td>GD P=0.1%</td>
<td>83.76</td>
<td>63.20</td>
</tr>
</tbody>
</table>

Table 4. Cumulative yield of trees, grafted on interstocks with different length

<table>
<thead>
<tr>
<th>Variants</th>
<th>Yield per tree, kg</th>
<th>Yield per tree to crown volume, kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>2013</td>
</tr>
<tr>
<td>Hybrid 2/10 - short interstock</td>
<td>1.18</td>
<td>4.35</td>
</tr>
<tr>
<td>GD P=5%</td>
<td>1.59</td>
<td>5.86</td>
</tr>
<tr>
<td>GD P=0.1%</td>
<td>2.10</td>
<td>7.78</td>
</tr>
</tbody>
</table>
considerably better due to the favorable conditions during the flowering period. The advantage of the trees with shorter interstock which was observed in 2012 was preserved in 2013. The differences were more pronounced in trees where Gisela 5 was used as an interstock. It is noticeable that the variants with longer interstock had better yield to crown volume ratio, than those with shorter interstock, and the differences in Gisela 5 in 2013 were statistically proved.

In 2012 the fruit bearing was very poor (Table 4) which was caused by the low percent of fruit set and the fact that during 2nd, 3rd and 11th of April the daily minimum of air temperature in the region of the experimental field reached respectively -2°C, -2.8°C and -1°C which resulted in partial frost damage of the blossoms. In 2013 the fruit bearing was significantly better. The obtained results show that with both Gisela 5 and North Star the trees with longer interstock have higher cumulative yield per tree than the ones with shorter interstock, although the differences are not statistically proved.

Conclusion

Under the influence of the longer interstock the trunk size was reduced in the area of the rootstock as well as in the area of the interstock. The differences were more visible where Gisela 5 was used. The longer interstock affects positively the trees on Gisela 5 by reducing the crown volume. The trees with longer interstock have larger number of blossoms per linear metre of a two-year-old tree, but lower percent of fruit set. Despite the lower fruit set the trees with the longer interstock have higher cumulative yield compared to the crown volume and the differences with Gisela 5 are statistically proved.

References

Lichev V, Dobrevska G and Djugalov H, 2012. First Results from the Examination of 3 Interstocks in the Sweet Cherry Cultivar Biggareau Burlat. Plant Science, 49, 44-44.

CONTENTS

Genetics and Breeding

Production potential of new triticale varieties grown in the region of Dobrudzha
A. Ivanova, N. Tsenov

Resistance of Bulgarian tomato varieties to the races of Xanthomonas vesicatoria
K. Aleksandrova, D. Ganeva, N. Bogatzevska

Evaluation of the combining ability for yield of grain of middle early maize lines
V. Valkova, N. Petrovska

Nutrition and Physiology

Effects of aflatoxin B1 on production traits, humoral immune response and immunocompetent organs in broiler chickens
I. Valchev, I. Zarkov, N. Grozeva, Y. Nikolov

Effect of linseed and sunflower oil supplementation in the diet on the growth performance in carp (Cyprinus carpio L.), cultivated in recirculating system
G. Zhelyazkov, Y. Staykov, G. Nikolov

Pharmacokinetics of some inorganic and organic zinc compounds in broiler chickens
S. Ivanova, D. Dimitrova, M. Petrichiev, L. Parvanova, G. Kalistratov, L. Vezhenkov

Seasonal changes in fatty acid composition and fat soluble vitamins content of grass carp and common carp
D. Dobreva, A. Merdzhanova, L. Makedonski, M. Stancheva

Effect of herd and number of lactation on milking temperament score in Black-and-White cows
I. Marinov, I. Slaveva, Zh. Gergovska

Effects of different dietary nitrogen sources on duodenal chyme parameters in yearling sheep
T. Slavov, V. Radev, R. Mihaylov, I. Varlyakov

Production Systems

Growing of common carp fingerlings in net cages at different stoking densities
Y. Staykov, S. Stoyanova

Cold and winter resistances of different oilseed canola hybrids and possibilities for reseeding of damaged by frost crops
G. Delchev

Efficiency and selectivity of some herbicides on winter oilseed rape
M. Dimitrova, I. Zhalnov, D. Stoychev

Effect of the date of application of a set of herbicides in common winter wheat crops on weed infestation
Z. Petrova, G. Sabev

Influence of the wooden filings on some soil indicators of the apple plant in a stoolbed
R. Popova, G. Dobrevska, H. Djugalov, A. Matev, L. Dospatliev, A. Stoyanova
Effect of the length of the interstock on the growth and reproductive aspects of sweet cherry cultivar Biggareau Burlat
P. Kaymakanov

Soil acidity and content of the available N, P and K in the region of south Dobrudzha
M. Nankova, I. Iliev, N. Nankov, G. Milev

Efficacy and selectivity of herbicides and herbicide combinations at winter oilseed canola, grown by conventional and Clearfield technologies
G. Delchev

Influence of the methods of propagation on persimmon fruit tree producing
A. Yordanov, S. Tabakov, G. Dobrevska

Agriculture and Environment

Agroecological assessment of wastewater and sludge from Municipal Wastewater Treatment Plant by content nutrient inputs
G. Kostadinova, D. Dermendjieva, G. Petkov, J. Gotchev

Evaluation of porcine claw horn health
T. Penev, V. Katsarov

Effect of different nitrogen sources on growth of microalgae Chlorella vulgaris cultivation in aquaculture wastewater
K. Velichkova

Vertical distribution of foliar pathogens on wheat
R. Rodeva, Z. Stoyanova, S. Nedyalkova, M. Pastirčák, M. Hudcovicova

Septoria/Stagonospora diseases of durum wheat (Triticum durum) in Bulgaria
R. Rodeva, S. Nedyalkova, Z. Stoyanova

Product Quality and Safety

Fatty acids profile, atherogenic and thrombogenic health indices of white brined cheese made from buffalo milk
N. Naydenova, I. Kaishev, T. Iliev, G. Mihaylova

Influence of the temperature for distillation on the yield and quality of the Rosa alba L. essential oil
A. Dobreva

Fatty acid composition of backfat during frozen storage in pigs fed vitamin E supplemented diet
T. Popova

Toxic and essential metal concentration of freshwater fishes from Pyasachnik Dam, Bulgaria
K. Peycheva, V. Panayotova, I. Makedonski, M. Stancheva

Morphological, reproductive manifestations and chemical composition of tomato varieties for greenhouse production
N. Valchev, G. Pevicharova
Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.) The following order in the reference list is recommended:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Acknowledgements (if any), References, Tables, Figures.