Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate an author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
Influence of the methods of propagation on persimmon fruit tree producing

A. Yordanov*, S. Tabakov, G. Dobrevska

Department of Fruit Growing, Faculty of Viticulture and Horticulture, Agricultural University, 12 Mendeleev, 4000 Plovdiv, Bulgaria

Abstract. The study was carried out in the experimental field of the Agricultural University near Plovdiv – Central South Bulgaria during the period 2007 – 2010. Trees of cultivars Hyakume and Hiratanenashi were produced by chip and T-budding performed in the first year nursery field on 10 September and chip-budding and tongue grafting performed in the second year nursery field on 1 March. One year old seedlings of Date plum (Diospyros lotus L.) were used as rootstocks. During the studied period steady high bud take was assessed as final output of nursery trees to both cultivars was noted with the budding and grafting performed on 1 March (93.3 – 98.3%). Summer chip-budding provides higher bud taking for both cultivars in comparison to the T-budding performed in the same period. The budding performed in summer in the first year nursery field favours the obtaining of higher and more branched trees of both cultivars. Budding performed in spring in the second year nursery field resulted in smaller size and less branched trees. In order to avoid the risk of winter cold injury, the plants budded in the summer and those assigned for chip-budding in spring have to be hilled with soil up to 20 cm above the soil level.

Keywords: Diospyros kaki, budding, grafting, bud take, branching

Introduction

Climatic conditions suitable for figs, almonds, peaches and apricots are suitable for cultivation of persimmon (Ludders, 2003). This cultivar is still not commonly grown in Bulgaria. An increasing interest among growers in this cultivar and tree production in particular has been recently observed. In countries like Italy and Greece, where different persimmon cultivars are traditionally grown, the main rootstock used is Date plum Diospyros lotus L. (Bellini, 2003; Papachatzis, 1990). This plant combines powerful root system with good drought and cold resistance. According to Serafimov et al. (1983, 2005), Tsolov and Stoyanov (1991), Date plum is the most suitable rootstock for persimmon in our conditions.

Regarding the optimum time of grafting, the data in the literature are not always unidirectional, as they relate to countries with different environmental conditions from ours (Zhu, 2003; Cepoiu and Stanica, 2002). Mishra (1982) reported that grafting resulted in better success than budding. Other authors (Vorontsov and Shteyman, 1982; Omarov and Erokhina, 1991) pointed out the chip-budding as a reliable method for persimmon fruit tree production. Bellini (2002, 2003) reported that grafting is a more often used method for persimmon propagation than budding. He also recommended chip-budding for thinner rootstocks.

The aim of the study was to determine a proper method of budding or grafting regarding persimmon fruit tree production.

Material and methods

The study was carried out in the experimental field of the Agricultural University near Plovdiv – Central South Bulgaria during the period 2007 – 2010. The cultivars Hyakume and Hiratanenashi which belong to Pollination Variant Non Astringent (PVNA) group and Pollination Variant Astringent (PVA) group, respectively, were studied (Lichev et al., 2012). Seedlings of Date plum (Diospyros lotus L.) were used as rootstocks. Chip and T-budding were performed in the first year nursery field on 10 September and chip-budding and tongue grafting were performed in the second year nursery field on 1 March. The experiment was set up in a randomized block design, with four replications and seventeen plants per plot. The biggest and the smallest plant of each plot were eliminated from the trial. Drop irrigation was applied in the nursery. In order to establish the native propensity of the cultivars to branching, no branching practices were applied. In order to avoid the risk of winter cold injury, the plants budded in the summer and those assigned for the spring chip-budding were hilled with soil up to 20 cm above the soil level. The rootstocks assigned for spring grafting were stored outside during winter and planted in the nursery immediately after grafting. The bud sticks for the spring terms were collected in mid-December and were kept at 1 – 2°C until they were used. Due to problems with the irrigation water supply in 2008, we did not present data for that year.

The following parameters were determined: scion thickness – measured at 15 cm above the graft union, scion height, mean length of a lateral shoot, cumulative scion growth, and mean number of lateral shoots per tree. All parameters were estimated after leaf fall. The results were statistically processed by the method of variance analysis.

Results and discussion

During the study period high bud take percentage was noted for Hyakume with both methods performed on 1 March (Figure 1). The commonly used in our country summer budding resulted in less bud take percentage. It should be mentioned that in terms of bud taking in the first year nursery field chip-budding resulted in better success than the well-known T-budding, which reached only 55% in 2010. In Hiratanenashi cultivar again higher rate of bud taking was recorded when the budding was performed in spring with both test methods (Figure 2), which coincides with the results reported by Chauhan et al. (2010). Omarov and Erokhina (1991) reported very low levels of
success in summer budding in comparison with budding performed at the beginning of vegetation. In our trial summer budding in the first year nursery field gave satisfactory results, and only in 2010 the success in budding in both tested methods performed in that period was comparable even to that of spring budding and grafting. Different cultivars do not affect the period and dynamics of sprouting of scion buds in the next growing season.

The results concerning the vegetative characteristics of the trees of Hyakume cultivar are presented in Table 1. The highest trees were obtained when chip or T-budding were performed in first year nursery field. Scion thickness was also greater when summer budding was used in comparison with the trees produced by budding or grafting in the beginning of vegetation. During the studied period low tree branching was noticed regardless of the propagation method. The best branching was recorded in trees produced by chip-budding in the first year nursery field, and the poorest branched trees were those obtained by budding or grafting in the second year nursery field.

Concerning tree height, similar results were noted for Hiratanenashi cultivar (Table 2). The highest trees were obtained when chip or T-budding were performed in the first year nursery field. Exceptions are the results recorded in the production cycle for 2006–2007, for T-budding in the first year nursery field, when trees were the smallest. Regarding the scion thickness, again significant differences were recorded in summer budding compared to the other variants. The best branching was recorded in trees produced by budding in the first year nursery field, and the poorest branched trees were those obtained by budding or grafting in the second year nursery field. It should be noted that in 2010 the trees of both cultivars obtained by chip-budding at the beginning of the vegetation did not form any lateral shoots, probably due to their weak vegetative growth as a whole during that year.

Summer budding in the first year nursery field resulted in bigger trees compared to those produced by budding or grafting in the beginning of vegetation. This is due to the fact that in the beginning of vegetation trees that budded in the previous summer have already formed the graft union, while budding performed in spring according Ketsarapong et al. (2007) takes around 35 days to complete establishment of the graft union between scion and rootstock. For other fruit tree species it is also reported that the later period of budding reduces the duration of scion growth (Lichev, 1997; Ayanoglu et al., 1997; Dimri et al., 2005).

Commonly used in Bulgaria T-budding performed in the first year nursery field can be successfully replaced for persimmon with

Figure 1. Percentage of bud take of Hyakume cultivar

Figure 2. Percentage of bud take of Hiratanenashi cultivar
chip-budding or tongue grafting performed at the beginning of vegetation, because these methods performed in the second year nursery field provide a higher percentage of bud taking. There is a risk of cold injuries for rootstocks budded in the first year nursery field or those assigned to spring budding if extremely low winter temperatures occur. In order to avoid the risk of winter cold injury, the plants budded in the summer and those assigned for spring chip-budding were hilled with soil up to 20 cm above the soil level.

Conclusions

Higher percentages of bud taking for both cultivars can be obtained if chip-budding and tongue grafting methods are performed in the second year nursery field in comparison with chip and T-budding performed in the first year nursery field. The summer chip-budding method provides higher percentages of bud taking for both cultivars in comparison with the traditional for our country T-budding performed in the same period. Summer budding favours the obtaining of bigger trees of both cultivars in comparison with the trees produced by budding or grafting performed in the beginning of vegetation.

There is a risk of cold injuries for rootstocks budded in the first year nursery field or those assigned to spring budding if extremely low winter temperatures occur. In order to avoid the risk of winter cold injury, the plants budded in the summer and those assigned for chip-budding in spring have to be hilled with soil up to 20 cm above the soil level.

References

Proceedings of the 45th Kasetsart University Annual Conference, Bangkok, Thailand. Subject: Plants Bangkok: Kasetsart University, 271-278.

Serafimov S, Serafimova R and Iliev I, 1983. Southern and deciduous fruit plants, Hristo G. Danov Publishing House, Plovdiv (Bg).

CONTENTS

Genetics and Breeding

Production potential of new triticale varieties grown in the region of Dobrudzha
A. Ivanova, N. Tsenov

Resistance of Bulgarian tomato varieties to the races of Xanthomonas vesicatoria
K. Aleksandrova, D. Ganeva, N. Bogatzevska

Evaluation of the combining ability for yield of grain of middle early maize lines
V. Valkova, N. Petrovska

Nutrition and Physiology

Effects of aflatoxin B1 on production traits, humoral immune response and immunocompetent organs in broiler chickens
I. Valchev, I. Zarkov, N. Grozeva, Y. Nikolov

Effect of linseed and sunflower oil supplementation in the diet on the growth performance in carp (Cyprinus carpio L.), cultivated in recirculating system
G. Zhelyazkov, Y. Staykov, G. Nikolov

Pharmacokinetics of some inorganic and organic zinc compounds in broiler chickens
S. Ivanova, D. Dimitrova, M. Petrichev, L. Parvanova, G. Kalistratov, L. Vezhenkov

Seasonal changes in fatty acid composition and fat soluble vitamins content of grass carp and common carp
D. Dobreva, A. Merdzhanova, L. Makedonski, M. Stancheva

Effect of herd and number of lactation on milking temperament score in Black-and-White cows
I. Marinov, I. Slaveva, Zh. Gergovska

Effects of different dietary nitrogen sources on duodenal chyme parameters in yearling sheep
T. Slavov, V. Radev, R. Mihaylov, I. Varlyakov

Production Systems

Growing of common carp fingerlings in net cages at different stoking densities
Y. Staykov, S. Stoyanova

Cold and winter resistances of different oilseed canola hybrids and possibilities for reseeding of damaged by frost crops
G. Delchev

Efficiency and selectivity of some herbicides on winter oilseed rape
M. Dimitrova, I. Zhalnov, D. Stoychev

Effect of the date of application of a set of herbicides in common winter wheat crops on weed infestation
Z. Petrova, G. Sabev

Influence of the wooden filings on some soil indicators of the apple plant in a stoolbed
R. Popova, G. Dobrevska, H. Djugalov, A. Matev, L. Dospatliev, A. Stoyanova
CONTENTS

AGRICULTURAL SCIENCE AND TECHNOLOGY, VOL. 6, No 3, 2014

Effect of the length of the interstock on the growth and reproductive aspects of sweet cherry cultivar Biggareau Burlat
P. Kaymakanov

Soil acidity and content of the available N, P and K in the region of south Dobrudzha
M. Nankova, I. Iliev, N. Nankov, G. Milev

Efficacy and selectivity of herbicides and herbicide combinations at winter oilseed canola, grown by conventional and Clearfield technologies
G. Delchev

Influence of the methods of propagation on persimmon fruit tree producing
A. Yordanov, S. Tabakov, G. Dobrevska

Agriculture and Environment

Agroecological assessment of wastewater and sludge from Municipal Wastewater Treatment Plant by content nutrient inputs
G. Kostadinova, D. Dermendjieva, G. Petkov, J. Gotchev

Evaluation of porcine claw horn health
T. Penev, V. Katsarov

Effect of different nitrogen sources on growth of microalgae Chlorella vulgaris cultivation in aquaculture wastewater
K. Velichkova

Vertical distribution of foliar pathogens on wheat
R. Rodeva, Z. Stoyanova, S. Nedyalkova, M. Pastirčák, M. Hudcovicova

Septoria/Stagonospora diseases of durum wheat (Triticum durum) in Bulgaria
R. Rodeva, S. Nedyalkova, Z. Stoyanova

Product Quality and Safety

Fatty acids profile, atherogenic and thrombogenic health indices of white brined cheese made from buffalo milk
N. Naydenova, I. Kaishev, T. Iliev, G. Mihaylova

Influence of the temperature for distillation on the yield and quality of the Rosa alba L. essential oil
A. Dobreva

Fatty acid composition of backfat during frozen storage in pigs fed vitamin E supplemented diet
T. Popova

Toxic and essential metal concentration of freshwater fishes from Pyasachnik Dam, Bulgaria
K. Peycheva, V. Panayotova, I. Makedonski, M. Stancheva

Morphological, reproductive manifestations and chemical composition of tomato varieties for greenhouse production
N. Valchev, G. Pevicharova
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. **Tables** should be as simple and as few as possible. Each table should have its own explanatory title and be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Todorov N and Mitev J, 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows,IX International Conference on Production Diseases in Farm Animals, September 11–14, Berlin, Germany.

Thesis: Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.