Editor-in-Chief
Tsanko Yablanski
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Co-Editor-in-Chief
Radoslav Slavov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections

Genetics and Breeding
Atanas Atanasov (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothschild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Bojin Bojinov (Bulgaria)
Stoicho Metodiev (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Zervas Georgios (Greece)
Ivan Varlyakov (Bulgaria)

Production Systems
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Dimitar Panaiotov (Bulgaria)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Georgi Petkov (Bulgaria)
Ramesh Kanwar (USA)
Martin Banov (Bulgaria)

Product Quality and Safety
Marin Kabakchiev (Bulgaria)
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)

English Editor
Yanka Ivanova (Bulgaria)

Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines.

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
Effect of different nitrogen sources on the growth of microalgae Chlorella vulgaris cultivation in aquaculture wastewater

K. Velichkova*

Department of Biology and Aquaculture, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

Abstract. Nitrogen is one of the most important limiting nutrients and nitrogen control is critical for the intensive cultivation of algae. The aim of the present study was to explore the effect of different nitrogen sources on biomass accumulation in microalgae C. vulgaris during its cultivation in aquaculture wastewater. Microalgae cultivation was initiated in a bioreactor from 500 ml Erlenmeyer flask containing 250 ml wastewater from fish-ponds, “Getov” – Pleven, Bulgaria. The cultures were kept at room temperature (25–27°C) at fluorescent light with a light:dark photoperiod of 12:12 h. The experiment was conducted in variants with urea (1.125 g.l⁻¹) and ammonium nitrate (1.125 g.l⁻¹). The growth of the strain was checked for a 96-hour period. In the present study C. vulgaris showed better growth in wastewater from aquaculture with urea utilization as nitrogen source than as a source of nitrogen ammonium nitrate.

Keywords: aquaculture, biomass, Chlorella vulgaris, nitrogen sources, wastewater

Introduction

Algae cultures have been basically developed as an important source of many products, such as aquaculture feeds, human food supplements, pharmaceuticals and for biofuel (Apt et al., 1999; Pulz and Gross, 2001). Chlorella vulgaris refers to a globular green algae and cosmopolitan in occurrence. C. vulgaris is useful in biomass production on a commercial level because it is a rich source of protein, carbohydrates, and especially essential fatty acids (Sankar and Ramasubramanian, 2012). Microalgae optimize the suitable culture media for mass cultivation of microalgal biomass, which is very important for industrial production.

The generation of biomass by photosynthetic microalgae cultures varies depending on the environmental factors – temperature, nitrogen concentration, light intensity (Chen and Johns, 1991;Jimenez and Niell, 1991; Hu et al., 1998). The essential nutrients that contribute to biomass production are carbon and nitrogen (Prabakaran and Ravindran, 2012). Nitrogen is one of the most important limiting nutrients and nitrogen control is critical for the intensive cultivation of algae due to its role in growth and regulation of metabolism (Smit et al., 1997; Edwards et al., 2006). A wide variety of nitrogen sources, such as ammonia, nitrate, nitrite and urea can be used for growing microalgae. Among the organic nitrogen sources, urea is the best nitrogen source for culturing Chlorella (Becker, 1994). Nitrogen in the form of nitrate, ammonia and urea are the most common nitrogen sources. Ammonia is the chemical form of nitrogen, most readily taken up and assimilated by microalgae (Lourence et al., 1997).

Microalgae have also been used for wastewater treatment (Sirakov and Velichkova, 2014). Microalgae can mitigate the effects of sewage effluent and industrial sources of nitrogenous waste such as those originating from water treatment or fish aquaculture and at the same time contribute to biodiversity (Atanasov et al., 2013). Moreover, removing nitrogen and carbon from water microalgae can help reduce eutrophication in the aquatic environment. The interaction of nitrogen on their removal by microalgae should be of great concern when microalgae are used as a biological treatment in wastewater. Effluents from aquaculture are rich in solids and dissolved nutrients (Hii et al., 2011).

The aim of the present study was to explore the effect of different nitrogen sources on biomass accumulation in microalgae C. vulgaris during its cultivation in aquaculture wastewater.

Material and methods

Microalgae strain, medium and cultivation

C. vulgaris (SKU: 100-CVC00-50) was supplied from the Algae depot – USA (www.algaedepot.com). The wastewater used as a medium for the tested algae cultivation originates from fish-ponds “Getov” – Pleven, Bulgaria. Algae cultivation was initiated in a bioreactor of 500 ml Erlenmeyer flask containing 250 ml wastewater and added carbon dioxide (2%, v/v). The experiment was conducted in variants with urea (1.125 g.l⁻¹) and ammonium nitrate (1.125 g.l⁻¹) as nitrogen sources. Three luminescent lamps Sylvia Aqua Star – 18 w, 10 000 K were placed at a distance of 30 mm from the flasks. The light regime was adjusted at 12:12 h light:dark cycle in an illumination incubator until the end of the experiment. The temperature was kept between 25 and 27°C. The strains were checked for a 96-hour growth period. In the laboratory, the samples of wastewater were filtered through a 25mm, 3μm glass microfiber filters (GF/C) mounted on a Millipore filtration unit. The cells in the exponential period were inoculated (10%, v/v) in a liquid medium.

Growth measurements, chlorophyll and carotenoid content of microalgae culture

Algal growth curves and biomass concentrations were determined by measuring the absorbance at 450 nm and dry cell weight, respectively. Optical densities of microalgae cultures were measured at 0, 24, 48, 72 and 96 hours after start of the experiment in three replicates. The sample with volume one ml was appropriately diluted with deionized water and the average value was recorded by absorbance at 450 nm with the help of spectrophotometer DR 2800 (Hach Lange). For dry weight
determination, culture samples (5 ml) taken at different times were centrifuged at 5000 rpm for 10 min. They were rinsed twice with distilled water and dried at 70°C for 24 h to give the dry cell weight (mg.l⁻¹).

The isolation of pigments from algae cells included the following procedures: harvesting 2 ml of microalgae cells by centrifugation at 10000 rpm, two times for 3 min and discarding the supernatant, suspension of cells in 2 ml methanol/water 90:10 v/v and mixing Vortex for 1 min, heating the suspension for half an hour in a water bath at 60°C, cooling the samples at room temperature, centrifuging the suspension (10000 rpm for 3 min) and discarding the supernatant with dissolved pigments. The absorbance of the pigments extract (665, 652 nm for chlorophyll content (a+b) and 470, 666 nm for carotenoids content) was recorded by using a spectrophotometer. The chlorophyll content was computed (mg.l⁻¹) according to Lichtenthaler (1987) and carotenoid content was computed (mg.l⁻¹) according to Lichtenthaler (1987).

Data analyses were conducted by using one-way Analysis of Variance ANOVA (MS Office, 2010).

Results and discussion

The optical density of C. vulgaris cultivation in wastewater from aquaculture used as growing media with nitrogen sources increased twice every 24 hours from the beginning to the end of the experiment. A better algal density (0.8) was measured in wastewater from aquaculture with nitrogen source – urea in 96 hours in the present study (Figure 1). It had 5% higher optical density compared to nitrogen source ammonium nitrate for the same strain (Table 1). The algal density starts from 0.1 and increases to 0.76 in 96 hours of the cultivation of C. vulgaris in wastewater with ammonium nitrate. Under the influence of urea as nitrogen source the optical density increases from 0.12 to 0.8 under the same condition.

The concentrations of both used nitrogen sources had strong influence on cell division during the cultivation of C. vulgaris in the present study. We receive the best algal optical density with 1.125 g.l⁻¹ urea concentrations on the fourth day of the cultivation. The results obtained correspond to those of other authors using urea as nitrogen source in concentrations of 1 – 1.2 g.l⁻¹ during the cultivation of microalgae (Weena et al., 2010; Danesi et al., 2002).

Maximum dry biomass (1.2 g.l⁻¹) of C. vulgaris was obtained in wastewater enriched with urea as an nitrogen source, in comparison to its dry weight in wastewater with ammonium nitrate (0.98 g.l⁻¹) (Figure 2). From the beginning of growing up to 72 hours biomass doubled. From 72 hour to 96 hour a four-fold increase of the algal biomass was observed by the cultivation of C. vulgaris in wastewater from aquaculture with urea as a nitrogen source. The received results showed that the maximum vegetative growth was reached approximately 96 hours of incubation. Shi et al. (2000) receive the maximum biomass concentrations (dry cells) in the cultures with urea as nitrogen source compared to ammonium nitrate. In this study we received 18.3% lower dry weight of C. vulgaris grown with ammonium nitrate compared to a cultivate with urea as a nitrogen source.

The quantity of chlorophyll starts from 0.4 mg.l⁻¹ and increases to 4.8 mg.l⁻¹ in 96 hours of the cultivation of C. vulgaris in wastewater with urea as a nitrogen source and correspondingly from 0.3 mg.l⁻¹ to 4.2 mg.l⁻¹ with ammonium nitrate. The obtained results showed that the amount of chlorophyll from the beginning to the end of the experiment increased four-fold. The highest chlorophyll content was determined in C. vulgaris cultivated in wastewater from aquaculture with nitrogen source – urea (Table 1). It was 12.5% higher than the chlorophyll content for C. vulgaris cultivated under the same conditions, but with ammonium nitrate as a nitrogen source (Figure 3). Similar results presented authors who cultivate other green microalgae with urea and ammonium nitrate as sources of nitrogen. Prabakaran and Ravindran (2012) tested two nitrogen sources (urea and ammonium nitrate) for Scenedesmus and Chlorococcum cultivation. The best results – maximum amount of chlorophyll content were recorded in the treatments with 0.02% urea. According to Kong et al. (2011) with respect to dry cell weight, total chlorophyll yields, as well as cost, urea is the best nitrogen source for culture of C. vulgaris in their study. The results for dry weight and chlorophyll content in our study of C. vulgaris proved a better growth effect of urea used as nitrogen source compared to ammonium nitrate.

The quantity of carotenoids starts from 0.06 mg.l⁻¹ and
increases to 1.0 mg.l⁻¹ in 96 hours of the cultivation of C. vulgaris in wastewater with ammonium nitrate as a nitrogen source and correspondingly from 0.07 mg.l⁻¹ to 1.2 mg.l⁻¹ with urea (Figure 4). Here the same trend was observed as in chlorophyll – the content of carotenoids in C. vulgaris was higher in cultures grown in wastewater with urea nitrogen source, compared to the carotenoids of wastewater with ammonium nitrate. The quantity of carotenoids in C. vulgaris cultivated in aquaculture wastewater is four times less in comparison to that of the chlorophyll in the same culture at 96 hours. Anontho (2011) established for industrial application purposes, utilization of wastewater with a source rich in nitrogen such as urea CO(NH)₂, ammonia NH₃ or other excess nitrogen substances which make biomass production and photosynthetic pigments more economical on Chlorella’s growth at the first 72 hours of cultivation. In our study at 72 hours of the Chlorella cultivation the biomass, chlorophyll and carotenoid quantities doubled. Also the carotenoid biosynthesis depends on the increase in biomass content of the microalgae. Anitha et al. (2009) reveals that at decreasing the concentration of nitrogen sources there was a decreased growth, chlorophyll and biomass. Nitrogen starvation also triggered a rapid decline in nitrogen containing compounds such as photosynthetic pigments causing complete loss of photosynthetic efficiency.

The pH increased with the culture time and exceeded 10 at the end of cultivation (Kong et al., 2011). During our trial the measured pH varied from 7.0 to 8.96 in tested algae strain and the pH value increased mostly in cultivation with ammonium nitrate (Figure 5). The pH values in the cultures with potassium nitrate and urea fluctuated around 7.2. The microalgae C. vulgaris maintained the maximum growth rate in a wide range of pH between 6.0 and 9.0, but started to be inhibited from pH 5 (Yun et al., 1996). The reason of the

Table 1. Optical density, dry weight, chlorophyll and carotenoid of C. vulgaris grown of wastewater with different nitrogen sources

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C. vulgaris urea</th>
<th>C. vulgaris ammonium nitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>Optical density</td>
<td>0.12</td>
<td>0.80</td>
</tr>
<tr>
<td>Dry weight (g.l⁻¹)</td>
<td>0.20</td>
<td>1.20</td>
</tr>
<tr>
<td>Chlorophyll a+b (mg.l⁻¹)</td>
<td>0.40</td>
<td>4.80</td>
</tr>
<tr>
<td>Carotenoid (mg.l⁻¹)</td>
<td>0.07</td>
<td>1.20</td>
</tr>
</tbody>
</table>

* – p≤0.05, ns – p≥0.05

Figure 3. Chlorophyll (mg.l⁻¹) of C. vulgaris cultivated in wastewater from aquaculture with different nitrogen sources

Figure 4. Carotenoid (mg.l⁻¹) of C. vulgaris cultivated in wastewater from aquaculture with different nitrogen sources

Figure 5. pH of C. vulgaris cultivated in wastewater from aquaculture with different nitrogen sources
drop of pH values in the mixotrophic cultures might attributedo the increase of releasing H+5 with the utilization of ammonium ion and the metabolism of organic acids during aerobic respiration by the algae. In our study the pH was relatively stable in both nitrate sources used for the cultivation of C. vulgaris in the wastewater from aquaculture as a nutrient medium.

In consideration of the specific growth rate, biomass content and productivity, potassium nitrate, ammonium nitrate or urea is the suitable nitrogen source for cultivation of C. vulgaris, urea gained important generally in large-scale algal cultivation, because the cost of urea is lower than the others (Kong et al., 2011).

Conclusion

The study of the cultivation conditions of C. vulgaris in wastewater from aquaculture with nitrogen sources urea and ammonium nitrate has shown that the best results of the algae biomass growth and photosynthetic pigments could be achieved when cultivation is with urea. Besides, wastewater from aquaculture could be used as cultivation medium for microalge strains C. vulgaris.

Acknowledgments

Financial support was provided by the Faculty of Agriculture, Trakia University, Project №E/14.

References

Anondho W, 2011. Effect of the presence of substituted urea and also ammonia as nitrogen source in cultivated medium on Chlorella lipid content, Progress in Biomass and Bioenergy Production (ed. dr. Shahid Shaukat), In Tech, 273-282.

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics and Breeding</td>
<td>Production potential of new triticale varieties grown in the region of Dobrudzha</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>A. Ivanova, N. Tsenov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistance of Bulgarian tomato varieties to the races of Xanthomonas vesicatoria</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>K. Aleksandrova, D. Ganeva, N. Bogatzevska</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluation of the combining ability for yield of grain of middle early maize lines</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>V. Valkova, N. Petrovska</td>
<td></td>
</tr>
<tr>
<td>Nutrition and Physiology</td>
<td>Effects of aflatoxin B1 on production traits, humoral immune response and immunocompetent organs in broiler chickens</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>I. Valchev, I. Zarkov, N. Grozeva, Y. Nikolov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of linseed and sunflower oil supplementation in the diet on the growth performance in carp (Cyprinus carpio L.), cultivated in recirculating system</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>G. Zhelyazkov, Y. Staykov, G. Nikolov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pharmacokinetics of some inorganic and organic zinc compounds in broiler chickens</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>S. Ivanova, D. Dimitrova, M. Petrichev, L. Parvanova, G. Kalistratov, L. Vezenkov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seasonal changes in fatty acid composition and fat soluble vitamins content of grass carp and common carp</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>D. Dobreva, A. Merdzhanova, L. Makedonski, M. Stancheva</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of herd and number of lactation on milking temperament score in Black-and-White cows</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>I. Marinov, I. Slaveva, Zh. Gergovska</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effects of different dietary nitrogen sources on duodenal chyme parameters in yearling sheep</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>T. Slavov, V. Radev, R. Mihaylov, I. Varlyakov</td>
<td></td>
</tr>
<tr>
<td>Production Systems</td>
<td>Growing of common carp fingerlings in net cages at different stoking densities</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>Y. Staykov, S. Stoyanova</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cold and winter resistances of different oilseed canola hybrids and possibilities for reseeding of damaged by frost crops</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>G. Delchev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efficiency and selectivity of some herbicides on winter oilseed rape</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>M. Dimitrova, I. Zhalnov, D. Stoychev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of the date of application of a set of herbicides in common winter wheat crops on weed infestation</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Z. Petrova, G. Sabev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Influence of the wooden filings on some soil indicators of the apple plant in a stoolbed</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>R. Popova, G. Dobrevska, H. Djugalov, A. Matev, L. Dospatliev, A. Stoyanova</td>
<td></td>
</tr>
</tbody>
</table>
Effect of the length of the interstock on the growth and reproductive aspects of sweet cherry cultivar Biggareau Burlat
P. Kaymakanov

Soil acidity and content of the available N, P and K in the region of south Dobrudzha
M. Nankova, I. Iliev, N. Nankov, G. Milev

Efficacy and selectivity of herbicides and herbicide combinations at winter oilseed canola, grown by conventional and Clearfield technologies
G. Delchev

Influence of the methods of propagation on persimmon fruit tree producing
A. Yordanov, S. Tabakov, G. Dobrevska

Agriculture and Environment

Agroecological assessment of wastewater and sludge from Municipal Wastewater Treatment Plant by content nutrient inputs
G. Kostadinova, D. Dermendjieva, G. Petkov, J. Gotchev

Evaluation of porcine claw horn health
T. Penev, V. Katsarov

Effect of different nitrogen sources on growth of microalgae Chlorella vulgaris cultivation in aquaculture wastewater
K. Velichkova

Vertical distribution of foliar pathogens on wheat
R. Rodeva, Z. Stoyanova, S. Nedyalkova, M. Pastirčák, M. Hudcovicova

Septoria/Stagonospora diseases of durum wheat (Triticum durum) in Bulgaria
R. Rodeva, S. Nedyalkova, Z. Stoyanova

Product Quality and Safety

Fatty acids profile, atherogenic and thrombogenic health indices of white brined cheese made from buffalo milk
N. Naydenova, I. Kaishev, T. Iliev, G. Mihaylova

Influence of the temperature for distillation on the yield and quality of the Rosa alba L. essential oil
A. Dobreva

Fatty acid composition of backfat during frozen storage in pigs fed vitamin E supplemented diet
T. Popova

Toxic and essential metal concentration of freshwater fishes from Pyasachnik Dam, Bulgaria
K. Peycheva, V. Panayotova, I. Makedonski, M. Stancheva

Morphological, reproductive manifestations and chemical composition of tomato varieties for greenhouse production
N. Valchev, G. Pevicharova
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with "*".

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Todorov N and Mitev J. 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows. IX International Conference on Production Diseases in Farm Animals, September 11–14, Berlin, Germany.

Thesis:

Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods.”