Scope and policy of the journal

Agricultural Science and Technology /AST/ – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence.

They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO).

The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU.

The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editor-in-Chief
Tsanko Yablanski
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Co-Editor-in-Chief
Radoslav Slavov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections

Genetics and Breeding
Atanas Atanasov (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothschild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Bojin Bojinov (Bulgaria)
Stoicho Metodiev (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Zervas Georgios (Greece)
Ivan Varlyakov (Bulgaria)

Production Systems
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Dimitar Panaiootov (Bulgaria)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Georgi Petkov (Bulgaria)
Ramesh Kanwar (USA)
Martin Banov (Bulgaria)

Product Quality and Safety
Marin Kabakchiev (Bulgaria)
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)

English Editor
Yanka Ivanova (Bulgaria)
Clinical and haematological studies on subclinical lactational ketosis in dairy goats

R. Binev*, V. Marutsova1, V. Radev2

1Department of Internal Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
2Department of Animal Morphology, Physiology and Nutrition, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

Abstract. The most common metabolic diseases in small ruminants are peri-parturient hypocalcemia, pregnancy toxemia (ketosis), rumen acidosis and hypomagnesaemia. While pregnancy toxemia is well known medical condition, lactational ketosis is almost unknown in small ruminant practice. A total of 58 dairy goats, up to day 30 of lactation were included in the study. Clinical examination (rectal temperature, heart rate, respiratory rates, rumen contractions and inspection of conjunctival mucus membrane), BCS and determining the values of β-hydroxybutyrate was performed on all goats. Animals were divided into two groups, control one consists of 30 goats (BCS > 2.0 and concentration of β-hydroxybutyrate < 0.8 mmol/l), and second group consists of 28 goats with subclinical lactational ketosis (BCS < 2.0 and concentration of β-hydroxybutyrate ≥ 0.8 mmol/l). Blood samples were obtained and analyzed for red blood cell (RBC, T/l), haemoglobin (HGB, g/l), haematocrit (HCT, %), mean corpuscular volume (MCV, fl), mean corpuscular haemoglobin (MCH, pg), mean corpuscular haemoglobin concentration (MCHC, g/l), white blood cell counts (WBC, G/l), lymphocytes (LYM, %), monocytes (MON, %), granulocytes (GRA, %), red blood cell distribution width (RDW, %) and red blood cell distribution width absolute (RDWa, fl). From our study, no changes were found in the examined clinical signs. Haematologic analysis showed changes in the quantities of erythrocytes, while the other parameters (HGB, HCT, MCV, MCH, MCHC, WBC, LYM, MON, GRA, RDW and RDWa) fluctuated around control values.

Keywords: negative energy balance, subclinical ketosis, β-hydroxybutyrate, dairy goats

Introduction

Metabolic diseases occupy a substantial part of ruminant pathology. In dairy livestock husbandry, bovine ketosis, as well as pregnancy toxicsis (gestational ketosis) in small ruminants, are the most important health problems. So far, some aspects of cause-and-effect relationships between negative energy balance in the immediate precalving period and disorders as ketosis, abomasal dislocation, retention of placenta, milk fever, metritis and mastitis in parturient dairy cows have been elucidated (Dohoo et al., 1983; Duffield et al., 2008; LeBlanc, 2010). The last 10 – 15 years have witnessed an increased interest to subclinical forms of diseases related to negative energy balance in dairy cows, sheep and goats (Herdt, 2000; Suthar et al., 2013). The significance of subclinical ketosis for health and economic results is confirmed by the average incidence of 43% of this disorder among dairy cattle in the USA (McArt et al., 2012). The total prevalence of subclinical ketosis in the USA varies from 8.9 to 43% in the different reports (Dohoo et al., 1983; Duffield et al., 1998; McArt et al., 2012). Investigations conducted in 10 European countries between May-October 2011 established a prevalence of 21.8% (from 11.2% to 36.6%) (Suthar et al., 2013). On the background of the considerable body of information on subclinical ketosis in dairy cows, the data on this disease in small ruminants are mainly on toxicsis during pregnancy and at a lesser extent, on lactational ketosis, observed after the parturition.

Literature data about the prevalence of ketosis among sheep and goats are rather few. Over a 12-year period (1992 – 2004) sheep affected by pregnancy toxicsis were between 6.5% and 37% (Al-Mujalli, 2008). Gupta et al. (2008) demonstrated that subclinical ketosis prevalence in pregnant sheep was 14.86%, while the rate in lactating sheep – 13.51%. In available scientific literature, there are no reliable numeric data for morbidity rates referring both to gestational and lactational clinical and/or subclinical ketosis in goats. Subclinical ketosis is diagnosed on the basis of assay of blood β-hydroxybutyrate (BHBA), either spectrophotometrically or by means of portable electronic devices (Iwersen et al., 2009; Voyvoda and Erdogan, 2010; Panousis et al., 2012). An important tool for assessment not only of nutritional status of animals in a given population, but also detecting potential health problems in dairy cows, sheep and goats, is body condition score (BCS). BCS is a relatively simple and accessible parameter of available body reserves allowing animals to cope with states of negative energy balance, stress and nutritional deficiencies (Villaquar et al., 2012). Deviations in blood BHBA concentrations and BCS are indices of inadequate energy resources and possible occurrence of postpartum metabolic disturbances (Koyuncu and Altınışıkçı, 2012).

The purpose of the present study was to investigate the causes for appearance of clinical and subclinical lactational ketosis in high-yielding dairy goats and corresponding clinical and haematological parameters. The results could help to diagnose the condition.

Material and methods

Animals

In February 2014, two goats owned by a private owner from the Yabalkovo settlement, Dimitrovgrad municipality were referred to the Farm Animal Clinic at the Faculty of Veterinary Medicine, Stara Zagora. The animals originated from a farm with 304 purebred Saanen goats up to 3.5 years of age, out of which 174 parturient, 96 – pregnant, 7 breeding bucks and 27 young males. The average milk yield of the herd was 4.25 l/day/goat, and average offspring number – 2.3. The goats were entirely reared indoor in barns.
Clinical investigations
Rectal temperature, heart and respiratory rates, rumen contractions were measured in patients referred to the clinic as well as goats at the farm. Inspection of visible mucous coats was also performed using routine clinical diagnostic methods.

Body condition score
Body condition score was assessed using 5-point scale (1.0–5.0, 0.5 increments) (Villaqurin et al., 2012). The animals were evaluated visually, via palpation in the region of lumbar vertebrae and the sternum.

Blood sampling and analyses
Blood samples were obtained by jugular venipuncture using sterile 21G needles and vacutainers (Biomed, Bulgaria) with K$_2$EDTA – 3 ml, heparin – 5 ml, gel and clot activator – 6 ml. Blood BHBA concentrations were determined in situ using a portable Xpress-I system (Nova Biomedical, UK). Samples for CBC analysis were transported and stored at 4°C. Analysis was conducted within 2 hours after sampling. The following indices were determined: red blood cells (RBC, T/l), haemoglobin (HGB, g/l), haematocrit (HCT, l/l), mean corpuscular volume (MCV, fl), mean corpuscular haemoglobin concentration (MCHC, g/l), white blood cell counts (WBC, G/l), lymphocytes (LYM, %), monocytes (MON, %), granulocytes (GRA, %), red blood cell distribution width (RDW, %) and absolute red blood cell distribution width (RDWa, fl). Haematological investigations were done on an automated analyser Exigo EOS Vet (Boule Medical AB, Sweden).

Nutrition
Goats were reared entirely in indoors, offered feed twice per day and with free access to drinking water. The ration consisted of roughage: straw, beansstalks and bean hulls, alfalfa hay (nutritional content: dry matter – 84.50%, crude protein – 20.97%, crude fat – 1.23%, crude ash – 10.66%, moisture – 15.50%, digestibility – 62.85%, gas production – 223.83%, neutral detergent fibre (NDF) – 49.01%, acid detergent fibre (ADF) – 35.45%, ME, MJ/kg DM – 10.33), approximately 3 kg/animal daily, chopped, particle size 4–6 cm and pelleted concentrate feed at 4–6 kg daily and pelleted concentrate feed at 4–6 kg.

Experimental design
A total of 58 goats, 2.5–3.5 years of age, were included in the study. Lactating goats until the 30th lactation day were used. All animals underwent physical examination, BCS, blood β-hydroxybutyrate analysis. On the basis of results, goats were divided into 2 groups – ketotic and control: first group with BCS > 2.0 and blood β-hydroxybutyrate < 0.8 mmol/L (n=30) – control group; second group with BCS ≤ 2.0 and blood β-hydroxybutyrate ≥ 0.8 mmol/L (n=28) – lactational subclinical ketosis group.

Statistical analysis
Statistical analysis was done with Statistica 6.0 (Windows) software, StatSoft, Inc. (USA, 1993) and ANOVA test. Data are presented as mean ± standard deviation (SD). The level of statistically significance was p < 0.05.

Results
Physical exam did not reveal any significant changes vs control measurements. Data for rectal temperature, heart rate, respiratory rates and rumen contractions are presented in Table 1. The investigations showed that weight loss in goats was substantial at the background of preserved appetite and milk yield. Wight loss occurred between 10th and 30th postpartum days, and most the most pronounced between the 10th and the 20th days.

Mean BCS (Table 2) in goats with subclinical ketosis (group 2) was 1.36±0.36 (p<0.001) vs control goats 2.50±0.27. Average

| Table 1. Clinical parameters in control goats (Group 1) and goats with subclinical ketosis (Group 2) |
|---|---|---|
| Parameters | Group 1 | Group 2 |
| Temperature (°C) | 38.2 ± 0.01 | 38.7 ± 0.02** |
| Heart rate (bpm) | 75.4 ± 0.03 | 79.6 ± 0.01** |
| Respiratory rate (l/min) | 20.1 ± 0.01 | 23.2 ± 0.02** |
| Rumen contractions | 12.4 ± 0.02 | 11.3 ± 0.01** |

Legend: n.s.–non-significant

| Table 2. Body condition scores and blood in control goats (Group 1) and goats with subclinical ketosis (Group 2) |
|---|---|---|
| Goats | BCS | BHBA (mmoll/L) |
| Group 1 | 2.50 ± 0.27 | 0.17 ± 0.1 |
| Group 2 | 1.36 ± 0.36*** | 1.01 ± 0.32*** |

*** Level of significance, p<0.001

| Table 3. Haematological parameters in control goats (Group 1) and goats with subclinical ketosis (Group 2) |
|---|---|---|
| Parameters | Group 1 | Group 2 |
| RBC (x1012/l) | 13.15 ± 0.03 | 11.18 ± 0.51* |
| HGB (g/l) | 97.00 ± 7.55 | 86.50 ± 6.56 |
| HCT (l/l) | 0.26 ± 0.05 | 0.26 ± 0.03 |
| MCV (fl) | 20.07 ± 1.30 | 20.70 ± 1.40 |
| MCH (pg) | 7.41 ± 0.45 | 8.15 ± 0.67 |
| MCHC (g/l) | 369.71 ± 3.87 | 366.28 ± 6.85 |
| WBC (x103/l) | 10.89 ± 2.75 | 11.21 ± 2.68 |
| LYM (%) | 60.87 ± 11.14 | 57.82 ± 8.47 |
| MON (%) | 5.59 ± 1.10 | 5.61 ± 0.96 |
| GRA (%) | 33.52 ± 10.38 | 36.77 ± 8.54 |
| RDW (%) | 33.14 ± 1.66 | 31.12 ± 1.03 |
| RDWa (fl) | 12.03 ± 0.65 | 11.80 ± 0.91 |

*Level of significance, p<0.05
blood BHBA concentration in the group with subclinical ketosis was 1.01±0.32 mmol/l (p<0.001) whereas in control goats 0.17±0.1 mmol/l.

Haematological results in control and ketogenic goats are shown in Table 3. Statistically significant changes were detected only in RBC counts. In animals with subclinical ketosis they were lower (11.18±0.51 T/L, p<0.05) than in controls 13.15±0.03 T/L. The other studied CBC parameters (HGB, HCT, MCV, MCH, MCHC, WBC, LYM, MON, GRA, RDW and RDWa) were comparable to values in controls.

Discussion

In sheep and goats, gestational ketosis is observed during the last 6 to 4 weeks of pregnancy. The most important cause for the occurrence of this pathology is the negative energy balance consequently to enhanced requirements of developing foetuses for glucose (Van Saun, 2000; Schlumbohm and Harmeyer, 2008). As predisposing factors, the number and weight of foetuses, body condition of the dam, age, breed, number of lactation, feeding, stress factors etc. have been outlined (Hefnawy et al., 2011). The farming of dairy goats with high genetic potential for milk and evidence for the presence of subclinical ketosis are reasons for separating subclinical lactational ketosis in small ruminants from pregnancy toxiscosis.

Blood BHBA concentrations reflect the extent of oxidation of esterified fatty acids in the liver (LeBlanc, 2010), with values higher than 0.7 mmol/l regarded as indicating subclinical ketosis in goats (Rook, 2000; Ramin et al., 2007), while in sheep the range is from 0.8 to 1.6 mmol/l (Andrews, 1997). The postpartum body weight loss in high-yielding animals and BHBA concentrations from 0.8 to 1.9 mmol/l between the 10th and 30th lactation days in our study were compatible with signs of classic type 1 subclinical ketosis in dairy cows.

Recommended BCS for goats during the last third of pregnancy in the literature are from 2.5 to 3.0 (Pugh, 2002), but data about lactating goats are not available. On the basis of our experiment, we could suggest BCS over 2.0 for lactating goats, as they are accompanied with normal blood BHBA concentrations.

The established negative energy balance (NEB) results from the impossibility to satisfy the nutritional needs of the body in the period of enhanced milk production. The NEB requires an adequate nutritional regimen and purposeful prevention action in intensively reared high-producing goats. On the other side, NEB-related conditions activate the adrenal glands function (Antonov, 2000), that could explain the detected erythropaenia. The latter occurs consequently to blood redistribution in a way similar to that in “stress leukogramme” which is present when the levels of catecholamines, cortisol, endorphins etc. are increased.

We assume that the lack of changes in the colour of conjunctivae was due to the milk decrease in RBC and the lack of deviations in haemoglobin content.

The performed haematological investigations showed change in erythrocyte counts only, which were lower than the control levels. The differences in all other studied parameters (HGB, HCT, MCV, MCH, MCHC, WBC, LYM, MON, GRA, RDW and RDWa), were insignificant. Thus our data were in agreement with CBC changes reported in goats (Barakat et al., 2007) and sheep (Gupta et al., 2008).

There are literature reports about immunosuppressive effect of ketone bodies (BHBA and acetooacetate) in cows (Franklin and Young, 1991) and goats (Hefnawy et al., 2011), resulting in decreased lymphocytopoiesis and lower lymphocyte counts. In the present study, such a tendency was also present, although the alterations were statistically insignificant.

Conclusion

The observation of subclinical lactational ketosis in high-yielding dairy goats is a reason for more in-depth and extensive future investigations on lactational ketosis, including sheep as well. The health and economic impact of the disease requires more attention from farmers and practicing veterinarians for monitoring and management of this problem in modern intensive production systems. In this study, the onset of NEB and subclinical ketosis had a slight effect on haematological parameters in agreement with the subclinical course of the disease.

The monitoring of blood BHBA concentrations (≥ 0.8 mmol/l) and deviations in body condition score (≥ 2.0) are recommended as specific markers of assessment and prevention of metabolic diseases in high-yielding dairy goats.

References

Dohoo IR, Martin SW, Meek AH and Sandals WCD, 1983. Disease, production and culling in Holstein-Friesian cows. I. The data. Preventive Veterinary Medicine, 1, 321-334.

CONTENTS

Review

Effect of cubicle technological parameters on welfare and comfort of dairy cows 377
D. Dimov

Genetics and Breeding

Identification of promising genotypes for hybridization in spring barley 383
B. Dyulgerova, D. Dimova, N. Dyulgerov

Comparative evaluation of triticale cultivars grown in the region of Dobrudzha 387
A. Ivanova, N. Tsenov

Stress tolerance to drought of inbred maize lines 392
P. Vulchinkova

Sericin content in raw silk from Bombyx mori L. cocoons with different fluorescent characteristics 395
M. Panayotov

Genetic variability in two-rowed spring barley 400
B. Dyulgerova, N. Dyulgerov, M. Dimitrova-Doneva

Testing of new Bulgarian sunflower hybrids under the conditions of Northeast Bulgaria 403
II. Phenological specificity
G. Georgiev, P. Peevska, E. Penchev

Maize hybrids testing in system “Plus” 409
S. Vulchinkov, V. Valkova, D. Ilchovska, P. Vulchinkova

Effect of gamma-irradiation on the fatty acid composition and susceptibility to powdery mildew (Erysiphe cruciferarum) of oilseed rape plants 413
M. Petkova, M. Dimova, D. Dimova, S. Bistrichanov

Nutrition and Physiology

Investigations on haematological parameters and bone marrow morphology in broiler chickens with experimental aflatoxicosis 417
I. Valchev, D. Kanakov, Ts. Hristov, L. Lazarov, N. Grozeva, Y. Nikolov

Light microscopy of the adipose tissue distribution along the coronary branches in the myocard of the New Zealand White rabbit 423
D. Vladova, D. Yovchev, R. Dimitrov, M. Stefanov, P. Hristov

Clinical and haematological studies on subclinical lactational ketosis in dairy goats 427
R. Binev, V. Marutsova, V. Radev

Effect of linseed and sunflower oils in the diet on the growth parameters in rainbow trout (Oncorhynchus mykiss W.) cultivated in a recirculating system 431
G. Zheliazkov
Production Systems

Intensity of spike increase in *Triticum aestivum* L. cultivars depending on some agronomy factors
M. Nankova, A. Ivanova, N. Tsenov

Effect of the complex suspension foliar fertilizers Lactofol and Amalgerol premium on grain yield from soybean (*Glycine max* (L.) Merr.) under the conditions of Dobrudzha region
G. Milev, R. Todorova

Seasonal dynamics of virus pathogens important for *Foeniculum vulgare*
B. Dikova, H. Lambev

Fertility and hatchability of Japanese quail eggs under semi arid conditions in Nigeria
A. Raji, S. Mbap, G. Mohammed, I. Kwari

Agriculture and Environment

Algae cenoses with dominate *Homoeothrix varians* Geitler and *Homoeothrix crustaceae* Woronichin in the Veleka River, Bulgaria
K. Velichkova, I. Kiryakov

Relationship between soil salinity and *Bassia hirsuta*, *Salicornia europaea* agg. and *Petrosimonia brachyata* distribution on the territory of Pomorie lake and Atanasovsko lake
M. Todorova, N. Grozeva, L. Pleskuza, Z. Yaneva, M. Gerdgikova

Environmental friendly methods of inducing resistance against *Cucumber mosaic virus* in pepper
N. Petrov

Product Quality and Safety

Meat quality traits in Japanese quails with regard to storage conditions and duration
P. Vasileva, H. Lukanov, A. Genchev

Analytical features of an optimized method for HPLC analysis of some polyphenolic acids and flavonoids in tomato fruits
D. Georgieva, I. Tringovska, A. Atanasova, V. Kmetov

Effect of vitamin E in the diet of pigs on the lipid and protein oxidative stability of meat during storage
T. Popova, P. Marinova, M. Ignatova

Variability of individual coagulation ability and qualitative composition of milk from Kalofer Longhaired goats
G. Kalaydzhiev, A. Vuchkov, T. Angelova, D. Yordanova, V. Karabashev, J. Krastanov, D. Dimov, N. Oblakov, S. Laleva, Y. Popova

Short Communication

Influence of the distillation rate on the quality and quantity of essential oil from *Rosa alba* L.
A. Dobreva
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.