Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence.

They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

P. Yankov*1, M. Nankova2, M. Drumeva1, D. Plamenov1, B. Klochkov2

1Department of Plant Production, Faculty of Marine Sciences and Ecology, Technical University Varna, 1 Studentska, 9010 Varna, Bulgaria
2Dobrudzha Agricultural Institute, 9520 General Toshevo, Bulgaria

Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize) – disking at 10 – 12 cm (for wheat); cutting at 24 – 26 cm (for maize) – cutting at 8 – 10 cm (for wheat); disking at 10 – 12 cm (for maize) – disking at 10 – 12 cm (for wheat); no-tillage (for maize) – no-tillage (for wheat). Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

Keywords: species composition, density of weeds, wheat, soil tillage systems

Introduction

Soil tillage is one of the first agricultural activities of man after his transition to a settled lifestyle. It was aimed both at loosening the surface soil layer to create favorable conditions for planting of seeds and at destroying the undesirable vegetation in the cultivated crop. The negative effect of the weed plants is expressed in direct competition for moisture and nutrients with the crops cultivated by man (Stoynev and Georgiev, 1984) this, on its part, decreases yield and deteriorates the quality of agricultural production (Glazunova, 2009). Shrestha et al. (2002) have pointed out that the developing of strategies for integrated weed control in modern agriculture requires knowledge on the mechanisms which influence the composition of the weed flora. In this relation the used types of soil tillage in crop rotation are one of the practices which affect the species in the weed associations and their density. The yield reduction by weeds in wheat may be up to 80% depending upon weed type, density, timing of emergence, wheat density, wheat cultivar and soil and environmental factors (Afentoulis and Efletherhorinious, 1996; Chhokar and Malik, 2002; Khera et al., 1995; Malik and Singh, 1995).

Studying the effect of soil tillage on the infestation of wheat with drooping brome (Bromus tectorum L.), Kettler et al. (2000) have found out that its populations decreased on plowed areas in comparison to areas with direct sowing, with 97 % and 41 % respectively, during the first and third crop rotations. Klochkov (1983) pointed out that under the contemporary level of chemical control of weeds, the infestation of the autumn crops as a function of the soil tillage is not significant.

The crop rotations, which involve numerous and variable plant species, also contribute to the suppression of weed vegetation by competing for environmental resources and by occupying all available niches in the agro systems (Anderson, 2005; Liebman and Davis, 2000). According to Rasmussen (1999) crop rotation is more important on agricultural areas where minimal soil tillage is applied than on intensively cultivated lands because it reduces to a minimum the problems related to fungal diseases and weed infestation of the grown plants.

The aim of this investigation was to study the species composition and weed density in a wheat crop depending on the applied soil tillage system in the crop rotation.

Material and methods

The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type [1]. The mechanical composition of these soils conditions favorable moisture and air regime (Yolevsky et al., 1959). The thickness of the humus horizon is about 70 cm. The total nitrogen content characterizes these soils as having moderate reserves. The reserves of P2O5 are low to moderate and the K2O reserves – from moderate to good. Soil reaction is neutral.

In a stationary trial initiated in 1987, 24 soil tillage systems are being tested based on various soil tillage tools and operations. The design of the variants was according to the non-standard method in two parallel crop rotations. The size of the trial plots was 25 m2. Field crops typical for the region of Dobrudzha – wheat, sunflower, grain maize and bean were involved in a six crop rotation.

In this investigation variants with wheat grown after previous crop grain maize during the fourth rotation since the initiation of the trial were analyzed. To characterize the period "beginning of
rotation” data from the first three years (2005–2007) were analyzed, and the period “end of rotation” – the results from the last three years (2008–2010) of the respective rotation. The species composition and the density of weeds were followed in the systems for soil tillage given below:

- plowing at 24 – 26 cm (for maize) – disking at 10 – 12 cm (for wheat);
- plowing at 24 – 26 cm (for maize) – cutting at 8 – 10 cm (for wheat);
- disking at 10 – 12 cm (for maize) – disking at 10 – 12 cm (for wheat);
- no-tillage (for maize) – no-tillage (for wheat).

All tilths on maize (with the exception of no-tillage – no-tillage) included additional single disking in autumn and pre-sowing harrowing in spring. To destroy the emerging weeds in the variant with direct sowing, a total herbicide was used. During the initial years, depending on the type and rate of weed infestation of maize, vegetation spraying with herbicides against broadleaf and/or grass weeds were applied besides the post-sowing treatment. Mechanical soil tillage after planting was not done.

Planting of wheat was done with Bettinson 3D seeder for direct sowing. Cultivar Enola was sown at norm 550 germinating seeds/m². Weed control was carried out according to the traditional technology for growing of this crop by treatment with herbicides at the beginning of spring. Weeds were determined as total number by species taking samples from eight replications along the diagonals of the trial plots. Reading was done in the variants sown with wheat in spring prior to treatment with herbicides.

The analysis over years according to the indices air temperatures and precipitation sum for the entire period from October to September showed that the investigation started with higher amount of rainfalls and temperatures slightly higher (2005) or close to (2006) the norm (Figure 1). A drastic drought followed in 2007 with precipitation sum 56.5% from the climatic norm and increase of temperatures. The next 2008 year was again humid and warm. It was followed by slight drought and temperatures higher than the norm in 2009. The last year of the investigation (2010) was warm and very humid, with amount of rainfalls with 49.7% higher than the norm. This demonstrated that the investigation was carried out in years of variable climatic conditions.

The data were processed with the help of the statistical software's Microsoft Excel 2007 and SPSS 16.0.

Results and discussion

At the beginning of the fourth rotation, highest was the number of the weeds in the plowing-disking system: 31.4 plants/m² (Table 1). Weed infestation was lowest at alternation of deep with shallow cutting – 20.9 plants/m². At constant direct sowing and annual disking the total number of weeds reached 25.4 and 26.2 plants/m², respectively. With regard to the weed composition, at the systems plowing – disking and disking – disking, the species black bindweed and charlock were predominant. When alternating cutting without turning of the soil layer with constant direct sowing, the major weeds were ivy-leaved speedwell and corn chamomile. At the end of the rotation the density of weeds was highest in the system disking-disking – 31.8 plants/m². It was followed according to rate of weed infestation by cutting without turning of the soil layer and constant direct sowing, with 24.2 and 27.2 plants/m², respectively. The total number of weeds was lowest at alternation of plowing with disking – 17.9 plants/m². In the last year of the rotation, at the system plowing-disking, the predominant weed species were black bindweed and charlock. At annual disking, besides black bindweed, major weeds were also corn chamomile, field poppy, green foxtail, creeping thistle, and shepherd’s purse. The corn chamomile was predominant in the system cutting-cutting, while thymeleaf sandwort, black bindweed and shepherd’s purse were also in high numbers. At constant no-tillage the main weed species were cleavers, sterile brome, shepherd’s purse, thymeleaf sandwort, corn chamomile and green foxtail.

At the end of the rotation, in comparison to the first year from its beginning, the total number of weeds decreased twice in the system plowing-disking – statistically significant at P = 0.01. According to Holm (1972) the good aeration of soil stimulates the germination of the weed seeds and most of the emerging plants are subsequently destroyed by the accompanying tilths applied to maintain plowing. The amount of black bindweed and charlock was strongly reduced, but the density of shepherd’s purse and corn chamomile increased. Meanwhile spices such as cleavers, field bindweed and field poppy occurred. The systems with minimal and no-tillage and tillage without turning of the soil layer, higher total number of weeds was observed at the end of the rotation – statistically significant at P = 0.05. According to Ball (1992) the higher weed infestation in the tilths without turning of the soil layer is due to the greater number of seeds of the predominant weed species closer to the soil surface. The
Table 1. Species composition and density of weeds in a wheat crop grown after maize, using different systems of soil tillage in crop rotation

<table>
<thead>
<tr>
<th>Weed species and number, m<sup>2</sup></th>
<th>Soil tillage system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beginning of rotation</td>
</tr>
<tr>
<td>Black bindweed/ Polygonum convolutorius</td>
<td>16.0</td>
</tr>
<tr>
<td>knotgrass/ Anthriscus sylvestris</td>
<td>0.9</td>
</tr>
<tr>
<td>charlock/ Cirsium arvense</td>
<td>0.0</td>
</tr>
<tr>
<td>Thymeleaf sandwort/ Arenaria serpyllifolia</td>
<td>1.3</td>
</tr>
<tr>
<td>Field poppy/ Papaver rhoeas</td>
<td>0.9</td>
</tr>
<tr>
<td>No-tillage</td>
<td>7.11</td>
</tr>
<tr>
<td>Cutting at 4-6 cm</td>
<td>3.7</td>
</tr>
<tr>
<td>Cutting at 8-10 cm</td>
<td>6.3</td>
</tr>
<tr>
<td>Disking at 10-12 cm</td>
<td>9.6</td>
</tr>
<tr>
<td>No-tillage</td>
<td>6.2</td>
</tr>
<tr>
<td>No-tillage</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Gd – Statistical significance of P for rates 5, 1 and 0.1 %, respectively

Weed density increased most at annual diskings and least – at constant direct sowing. The higher weed infestation under these soil tillage systems, regardless of the lower number of black bindweed and charlock and the total disappearance of some ephemerals such as ivy-leaved speedwell, was a result from the increase of species typical for these types of tillage. Similar tendency has been found out by other authors as well (Chhokar et al., 2007; Murphy et al., 2006; Sans et al., 2011). Under annual disking the density of green foxtail, corn chamomile, creeping thistle, shepherd’s purse, cleavers, field poppy, knotgrass, etc. increased. The use of annual direct sowing caused at the end of the rotation increase of the amount of the species sterile brome, green foxtail, shepherd’s purse, field bindweed, cleavers, thymeleaf sandwort and creeping thistle. At alternation of deep with shallow cutting, the number of thymeleaf sandwort, shepherd’s purse, knotgrass, green foxtail, etc., significantly increased at the end of the rotation. In this relation regular replacement of the tillage without turning of the soil layer, and minimal and no-tillage with deep plowing is recommended when growing wheat as a part of the soil tillage systems in crop rotation. The variations in the density and species composition of the weeds under the different soil tillage systems which occurred at the end of the rotation were a result from the application of chemicals for control of weed infestation and the changes of the soil properties caused by not using or combining various soil tillage tools and operations. The long-term usage of the same herbicides probably homogenized the weed associations; simultaneously significant changes occurred in the ratio and quantitative characteristics of certain weeds, some of which remained dominant while others decreased in density.
The results from the dispersion analysis showed that the influence of the independent and combined investigated factors – species composition of weeds, soil tillage systems and year conditions affected the rate of weed infestation of the soil (Table 2). Their effect on the investigated trait was significant at $P = 0.001$, with the exception of the factor year conditions, which effect was significant at $P = 0.05$. Among the investigated factors, the species composition of weeds had highest influence on the density of weeds (41.15%). The percent of the soil tillage systems was 2.68%. The double interaction of the investigated indices was relatively highest by combination species composition of weeds, soil tillage systems (33.32 %), followed by interaction of the species composition of weeds x year conditions (12.14%). The percent of the triple interaction of the investigated factors reached 8.80%.

Table 2. Significance of independent and combined effects of the investigated factors

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A. Species composition of weeds</td>
<td>13</td>
<td>163.679</td>
<td>511.449</td>
<td>.000</td>
</tr>
<tr>
<td>Factor B. Soil tillage systems</td>
<td>3</td>
<td>9.596</td>
<td>29.985</td>
<td>.000</td>
</tr>
<tr>
<td>Factor C. Year conditions</td>
<td>5</td>
<td>.871</td>
<td>2.721</td>
<td>.019</td>
</tr>
<tr>
<td>A x B</td>
<td>39</td>
<td>44.187</td>
<td>138.070</td>
<td>.000</td>
</tr>
<tr>
<td>A x C</td>
<td>65</td>
<td>9.662</td>
<td>30.191</td>
<td>.000</td>
</tr>
<tr>
<td>B x C</td>
<td>15</td>
<td>5.145</td>
<td>16.076</td>
<td>.000</td>
</tr>
<tr>
<td>A x B x C</td>
<td>195</td>
<td>2.334</td>
<td>7.292</td>
<td>.000</td>
</tr>
</tbody>
</table>

Conclusion

The soil tillage system had a significant effect on the species composition and density of weeds in the wheat crop grown after predecessor grain maize. The long-term alternation of plowing with disking together with the application of chemicals for weed control reduced the weed infestation in the wheat crop. The lower weed density under this soil tillage system was not related to variations in composition and relative percent of the individual species in the total weed infestation. The long-term application of systems involving tillage without turning of the soil layer, minimal and no-tillage in crop rotation lead to higher amount of weeds despite the use of chemicals. The reason for this is the greater variability of weed species typical for shallow tillage.

Acknowledgement

A part of the scientific research, the results of which are presented in this article, was conducted at TU – Varna as a part of a research project, funded by the state budget.

References

Klochkov B, 1983. On some theoretical and applied problems of minimal soil tillage of leached chernozem soils. Thesis for DSc, IWS (Bg).

Stoynev K and Georgiev D, 1984. Agronomy activities for control of drought. Soil science and agro chemistry, 2, 3-8 (Bg).

Review

Molecular mechanisms and new strategies to fight stresses in egg-producing birds
E. Shatskikh, E. Latypova, V. Fisinin, S. Denev, P. Surai

Genetics and Breeding

Gene action in the inheritance of date to ear emergence and time to physiological maturity in bread wheat crosses (*Triticum aestivum* L.)
N. Tsenov, T. Gubatov, E. Tsenova

Productivity and stability of the yield from common winter wheat cultivars developed at IPGR Sadovo under the conditions of Dobrudzha region
P. Chamurliyski, E. Penchev, N. Tsenov

Effect of black (stem) rust (*Puccinia Graminis F.SP. Tritici*) attack to the spike characteristics in Polish wheat (*Triticum Polonicum* L.)
H. Stoyanov

Analysis of DNA polymorphism of CAST gene in Local Karnobat and Stara Zagora sheep breeds
D. Hristova, S. Georgieva, S. Tanchev

Correlation between grain yield and yield components in winter barley varieties
N. Markova Ruzdik, D. Valcheva, D. Vulchev, Lj. Mihajlov, I. Karov, V. Ilieva

Genetic diversity in different accessions of oat (*Avena sativa* L.)
T. Savova, B. Dylgerova, G. Panayotova

Interspecific hybridization in cotton and its use in breeding
A. Stoilova, I. Saldzhiev

Influence of the direction of crossing on heterosis and transgression events in relation to the length of the vegetative period of Burley tobaccos variety group
Y. Dylgerski, T. Radoukova, L. Dospatliev

Nutrition and Physiology

The performance of female dairy calves fed texturized starters with different protein sources
E. Yavuz, N. Todorov, G. Ganchev, K. Nedelkov

Feeding value estimation of spring forage pea (*Pisum sativum* L.) in organic cultivation
I. Nikolova, N. Georgieva, Y. Naydenova

Production Systems

Treatment of post harvest residues with cellulose decomposing preparations
I. Effect on grain yield from wheat
G. Milev, I. Iliev, A. Ivanova
Seasonal dynamics of important for *Coriandrum sativum* virus pathogens
B. Dikova, H. Lambev

Crop relationship "yield-evapotranspiration" for green bean
R. Kalaydzhieva, D. Davidov, A. Matev, V. Kuneva

Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation
P. Yankov, M. Nankova, M. Drumeva, D. Plamenov, B. Klochkov

Agriculture and Environment

Assessment of Bulgarian Black Sea coastal water using the biological quality element phytoplankton
D. Petrova, D. Gerdzhikov

Evaluation on reaction of late maturing maize hybrids and lines to *Fusarium* ear rot
M. Haddadi, M. Zamani

Contemporary state of macrophytobenthos along the Bulgarian coast of the Black Sea
D. Petrova, V. Vachkova, D. Gerdzhikov

Bioconversion of nitrogen in eco-technical system for eggs production
A. Gencheva

Mixed viral infections in tomato as a precondition for economic loss
N. Petrov

Product Quality and Safety

Storage and its effect on the antioxidant capacity of dried Bulgarian *Chrysanthemum balsamita* L.
A. Popova, D. Mihaylova, I. Alexieva

Correcting the breadmaking quality of flour damaged by Sunn pest (*Eurygaster integriceps*) by using apple pectin
I. Stoeva

Investigation the influence of dietary fiber on the rheological properties of alginate beads
Z. Manev, N. Petkova, P. Denev, D. Ludneva, S. Zhelyazkov

Occurrence of *Pseudomonas syringae* pv. tomato in Bulgaria
M. Stoyanova, K. Aleksandrova, D. Ganeva, N. Bogatzevska
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold/, 14/ without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Todorov N and Mitev J, 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IX International Conference on Production Diseases in Farm Animals, September 11–14, Berlin, Germany.

Thesis:

Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.