Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines
The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student’s campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
AGRICULTURAL SCIENCE AND TECHNOLOGY

2015

An International Journal Published by Faculty of Agriculture, Trakia University, Stara Zagora, Bulgaria
Evaluation on reaction of late maturing maize hybrids and lines to Fusarium ear rot.

M. Haddadi1*, M. Zamani2

1Agricultural and Natural Resources Research Center of Mazandaran, Sari, Iran
2Maize and Forage Crops Research Department, Seed and Plant Improvement Institute, Karaj, Iran

Abstract. In order to evaluate and determine resistance rates of different corn genotypes to Fusarium ear rot, 22 inbred lines and 19 late and medium maturity hybrids in 2009 and 17 inbred lines and 14 late and medium maturity hybrids were planted in Qarakhel Agricultural Research Station in 2010. Each line and hybrid were planted separately. For each experiment a randomized complete block design with three replications was used. Plant ears were inoculated by Nail Punch method at the 10th day after anthesis. When the disease symptoms were observed, evaluation of each line and genotype was done based on percentage and severity of the disease symptom. The result in 2009 showed that 14 hybrids were tolerant. Hybrids of K3640/3 X MO17, K166B X K18, K166B X K19/1 and K3547/4 X MO17 were resistant. One hybrid was susceptible. Pure lines of K18 and K LM77007/7-2-2-1-2-1-2 were resistant. 14 tolerance lines and 6 susceptible lines were shown. In 2010 hybrids of K166B X K18 and K3653/2 X K18 were resistant. The other hybrids were tolerant. Pure lines of K3547/3 and K18 were resistant. Five tolerance lines were also shown.

Keywords: Artificial inoculation, corn, ear and Fusarium

Introduction

One of the major worldwide maize diseases, especially in tropical and subtropical regions, is Fusarium ear rot. Incidence and spread of the disease has been reported from different regions of maize fields. This disease has been reported from the cultivation regions of maize in Iran (Rahjou et al., 2009). Fusarium spp are known as common fungal pathogens of maize, causing ear, stalk, and root rots (Munkvold and Desjardins, 1997). When infection develops into Fusarium ear rot, the disease becomes of particular concern to maize producers and the processing industry, not only because it reduces grain quality (Afolabi et al., 2007) but also because F. verticillioides produces toxic secondary metabolites in maize kernels, called Fumonisins (Marasas, 2001; Marasas et al., 1981). Genetic variation for resistance to Fusarium ear rot has been investigated for a number of decades (Butron et al., 2006; Desjardins et al., 2005; Klein Schmidt et al., 2005; Presello et al., 2006; Schjoth et al., 2008). For the first time Fusarium ear rot disease was observed in Nebraska decayed corns and Sheldon (1904) reported its agent as Fusarium moniliforme. Several species of Fusarium cause seedling, root, stem and ear rot of corn all over the world (Lew et al., 2001). The most important and common pathogens related to pink ear rot in North America and many other temperate regions of the world are F. verticillioides (=moniliforme), F. proliferatum and F. subglutinans (Munkvold and Desjardins, 1997). Incidence of Fusarium ear rot depends on environmental conditions such as humidity and temperature. F. proliferatum and F. verticillioides are abundant in dry and warm regions in Europe such as Italy and Spain, and F. subglutinans is more common than F. proliferatum and F. verticillioides under cold and moist conditions (Goertz et al., 2010; Jurado et al., 2006; Logroco et al., 2002). F. verticillioides reduces seed resistance and quality, this species because of producing mycotoxins such as Moniliformine Fusain C, Fusaric acid and Fumonisins are hazardous for human and animal health and cause esophagus cancer, Epidemiological associations between maize consumption and esophagus cancer neural tube defects in newborns, and inhibition of ribosomal protein- synthesis and immunosuppression (Sun et al., 2007). Fusarium verticillioides causes Fusarium ear rot while the disease caused by F. graminearum is called Gibberella ear rot. Infections that begin in vegetative plant organs can spread through the plant and also affect the kernels (Bush et al., 2004; Koehler, 1942). Resistance to Fusarium ear rot found in maize is quantitative (Clements et al., 2004) and no complete resistance has been discovered. One way to reduce the level of mycotoxins in corn seeds to prevent infection with Fusarium spp. in the field is using low sensitive corn genotypes (Iglesias et al., 2010).

Material and methods

In order to evaluate and determine resistance rates of different corn genotypes to Fusarium ear rot, 22 inbred lines and 19 late and medium maturity hybrids in 2009 and 17 inbred lines and 14 late and medium maturity hybrids were planted in Qarakhel Agricultural Research Station in 2010. Each line and hybrid were planted separately.

The site is located in the Mazandaran province, 31°28’N latitude and 52°35’E longitude. Fields were manually planted (3 seeds per hill) in single-row plots 3 m long with 13 plants per row on 12 May. After emergence and bush establishment, plants were thinned to one plant per hill. Plots were spaced 0.75 m between rows and 0.25 m between hills. A randomized complete block design with three replications was used. In both years plants were artificially inoculated. Cultural practices were similar in both years. Fields were irrigated with a sprinkler device once per two week for 3 h. 72 treatments were planted in field condition and these treatments are mentioned at Tables 1. They were evaluated for resistance level to F. verticillioides.

To create ear rot infection spore suspension with concentration of 1×10^3 for each milliliter prepared and 7 – 10 days after pollination...
in the middle of ear (Mid ear) by injection method (Nail Punch) plants were inoculated. At harvest time, disease severity by using Jeffers et al. (1994) method in CIMMYT International Research Center with 1–6 scale for scoring calculated and cultivars responses were determined. 1. With no infection, 100% of ears are safe and infection percent is 0.2. Infection is limited to a few seeds around the inoculation site and less than or equal to 10%. 2. A quarter of grains (R) which fungal colony growth was inhibited at inoculation site and less than or equal to 10%. 3. More than half of the resistance can be related to seed physiological resistance. Among 17 hybrids, K 166B X K18 were resistant. Five lines were moderately resistant. In 2010 (Table 3) it was shown that 17 maize hybrids and 14 lines are significantly different (Ps99%). Among 17 hybrids, K 166B X K18 and K3653/2 X K18 were resistant hybrids. 15 hybrids also were moderately resistant. Among 14 lines, K3547/3 and K18 were resistant. Five lines were moderately resistant. Four lines were susceptible and three lines were highly resistant.

Results and discussion

In 2009, ANOVA (Table 1) is listed below, it is concluded that 19 maize hybrids and 22 lines are significantly different (Ps99%). Based on the resistance of cultivars, we divided them into different groups and the results are summarized in Table 2. After comparing means and ranking maize varieties, among 19 hybrids, hybrid K 3640/3 X K19 was susceptible to the disease. 14 hybrids were in moderately resistant group (MR). Four hybrids (K 3640/3 X MO17, K 3547/4 X MO17, K 166B X K18 and K166B X K191) were in resistant group (R) which fungal colony growth was inhibited at inoculation site and only a few of the seeds around the wound were infected. This resistance can be related to seed physiological resistance. Among 22 lines, K18 and KLM77007/7-2-6-3-1-2-1 were resistant. Six lines were susceptible and the highest susceptible line was K3304/1-2. 14 lines were moderately resistant. In 2010 (Table 3) it was shown that 17 maize hybrids and 14 lines are significantly different (Ps99%). Among 17 hybrids, K 166B X K18 and K3653/2 X K18 were resistant hybrids. 15 hybrids also were moderately resistant. Among 14 lines, K3547/3 and K18 were resistant. Five lines were moderately resistant. Four lines were susceptible and three lines were highly resistant.

Table 1. Variance analysis of disease severity of Fusarium ear rot on 19 hybrids and 22 lines of maize in 2009

<table>
<thead>
<tr>
<th>S.O.V Sources of variety</th>
<th>d.f.</th>
<th>Mean square (Ear rot)</th>
<th>S.O.V Sources of variety</th>
<th>d.f.</th>
<th>Mean square (Ear rot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep</td>
<td>2</td>
<td>17.33 ns</td>
<td>Rep</td>
<td>2</td>
<td>25.29**</td>
</tr>
<tr>
<td>Hybrid</td>
<td>18</td>
<td>128.1**</td>
<td>Line</td>
<td>21</td>
<td>182.8**</td>
</tr>
<tr>
<td>Error</td>
<td>36</td>
<td>13.24</td>
<td>Error</td>
<td>42</td>
<td>30.67</td>
</tr>
</tbody>
</table>

** and ns: Significant at 1% level and nonsignificant difference

Table 2. Mean comparison and categorizing of maize Lines and hybrids to Fusarium ear rot in 2009

<table>
<thead>
<tr>
<th>No.</th>
<th>Lines</th>
<th>Mean of disease severity, %</th>
<th>Reaction</th>
<th>Hybrids</th>
<th>Mean of disease severity, %</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K3640/3</td>
<td>16**</td>
<td>MR*</td>
<td>K 3640/3 X MO17</td>
<td>10**</td>
<td>R*</td>
</tr>
<tr>
<td>2</td>
<td>MO17</td>
<td>27.6**</td>
<td>S</td>
<td>K 3547/4 X MO17</td>
<td>10**</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>K19/1</td>
<td>21.3**</td>
<td>MR</td>
<td>K SC700</td>
<td>11.3**</td>
<td>MR</td>
</tr>
<tr>
<td>4</td>
<td>A679</td>
<td>18**</td>
<td>MR</td>
<td>K SC704</td>
<td>13**</td>
<td>MR</td>
</tr>
<tr>
<td>5</td>
<td>K166B</td>
<td>13.6**</td>
<td>MR</td>
<td>K 3673/1 X K18</td>
<td>16.3**</td>
<td>MR</td>
</tr>
<tr>
<td>6</td>
<td>K3515/2</td>
<td>15.3**</td>
<td>MR</td>
<td>K3653/2 X K19</td>
<td>18.3**</td>
<td>MR</td>
</tr>
<tr>
<td>7</td>
<td>K3653/2</td>
<td>29.6**</td>
<td>S</td>
<td>K166B X MO17</td>
<td>14.3**</td>
<td>MR</td>
</tr>
<tr>
<td>8</td>
<td>K3651/1</td>
<td>28**</td>
<td>S</td>
<td>K 166B X K19</td>
<td>17**</td>
<td>MR</td>
</tr>
<tr>
<td>9</td>
<td>K3547/5</td>
<td>11**</td>
<td>MR</td>
<td>K 166B X K18</td>
<td>7**</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>K18</td>
<td>10**</td>
<td>R</td>
<td>K 3304/1-2 X MO17</td>
<td>23.6**</td>
<td>MR</td>
</tr>
<tr>
<td>11</td>
<td>K74/1</td>
<td>25.6**</td>
<td>S</td>
<td>K 47/2-2-1-19-1-1 X K19</td>
<td>23.7**</td>
<td>MR</td>
</tr>
<tr>
<td>12</td>
<td>K3615/1</td>
<td>25.3**</td>
<td>S</td>
<td>K166B X K19/1</td>
<td>10**</td>
<td>R</td>
</tr>
<tr>
<td>13</td>
<td>K47/2-2-1-22-1-1-1</td>
<td>22.3**</td>
<td>MR</td>
<td>K3653/2 X K19/1</td>
<td>25**</td>
<td>MR</td>
</tr>
<tr>
<td>14</td>
<td>K3304/1-2</td>
<td>41.3**</td>
<td>S</td>
<td>K3653/2 X K18</td>
<td>17.3**</td>
<td>MR</td>
</tr>
<tr>
<td>15</td>
<td>K48/3-1-2-7-1-1-1-1</td>
<td>13.3**</td>
<td>MR</td>
<td>K3653/2 X MO17</td>
<td>13.3**</td>
<td>MR</td>
</tr>
<tr>
<td>16</td>
<td>KLM77007/7-3-1-2-2-1-1</td>
<td>17.6**</td>
<td>MR</td>
<td>K 74/1 X K19</td>
<td>21**</td>
<td>MR</td>
</tr>
<tr>
<td>17</td>
<td>K LM77002/10-1-1-1-1-1-3-2</td>
<td>12.3**</td>
<td>MR</td>
<td>K 3640/3 X K18</td>
<td>18.7**</td>
<td>MR</td>
</tr>
<tr>
<td>18</td>
<td>K LM77002/10-1-1-1-1-4-2</td>
<td>24.6**</td>
<td>MR</td>
<td>K 3640/3 X K19</td>
<td>31.7**</td>
<td>S</td>
</tr>
<tr>
<td>19</td>
<td>K LM77002/10-1-1-1-1-6-1</td>
<td>19.6**</td>
<td>MR</td>
<td>K 3640/3 X K19/1</td>
<td>23.7**</td>
<td>MR</td>
</tr>
<tr>
<td>20</td>
<td>K LM77007/7-2-6-3-1-2-1</td>
<td>9.3**</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>K LM77007/7-3-1-2-1-2-1</td>
<td>17**</td>
<td>MR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>K LM77002/10-1-1-1-1-3-1</td>
<td>22.3**</td>
<td>MR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*R = Resistant, S = Susceptible, MR = Moderately Resistant

Different letters in each column show significant difference at 5% probability (DMRT)
susceptible. The highest susceptible line was K19. For determining cultivars, through tooth-pick method, was 28% and 10%, the disease resistance and tolerance index, based on the scaling respectively. Disease severity, through silk-channel inoculation, method, among cultivars, those with less than 10% of disease 31% in dent corn and 12% in flint corn. Disease severity in natural severity were resistant and those with 11 – 25% were moderately infection is less than or equal to 10% in both dent and flint maize resistant (Tables 4). Identifying these cultivars and according to their cultivars. They inferred that flint corn, compared to dent corn, shows resistance to disease, we suggested that because of using artificial more resistance against F. verticilloides, while dent corn is more infection for evaluation, fumonisins production amount is low and susceptible. Lines were more susceptible than hybrids.

This is important in food safety. Clements et al. (2003) showed that there is high relationship between disease severity and fumonisin level and they reported that if a hybrid cultivar was identified resistant by using a reliable method such as our method in this study, its fumonisins are within its permitted level. Zamani et al. (1999) One important prevention measure to control red and pink ear ... than nail punch. To determine the resistance to the kernels. Kernel resistance blocks the spread of the fungus from ear rot by different species, a variety of things have been kernel to kernel. Resistance to Fusarium spp. is quantitatively done. However, the diversity of inoculation methods and different pathogenicity species limit the amount of useful information obtained by Gendloff et al., 1986. Czmbor and Ochodzki (2009) studied the disease severity with different infection methods by comparing the resistance of dent and flint maize cultivars against F. verticilloides. They concluded that disease severity in dent and flint maize cultivars, through tooth-pick method, was 28% and 10%, respectively. Disease severity, through silk-channel inoculation, 31% in dent corn and 12% in flint corn. Disease severity in natural infection is less than or equal to 10% in both dent and flint maize cultivars. They inferred that flint corn, compared to dent corn, shows more resistance against F. verticilloides, while dent corn is more susceptible. Lines were more susceptible than hybrids.

Conclusion

One important prevention measure to control red and pink ear rots is to use resistant hybrids and inbred lines. Two types of ear rot resistance have been identified in maize. Silk channel resistance prevents the fungus from invading through the silk channel down to the kernels. Kernel resistance blocks the spread of the fungus from kernel to kernel. Resistance to Fusarium spp. is quantitatively inherited, but until now no fully resistant maize genotype has been discovered. The relationships between resistance and myco toxin contamination have been documented. Hybrids that hold their ears vertically and have poor ear cover can be more susceptible to pink ear rot. Hybrids with tight husks appear to be more vulnerable to red

| Table 3. Variance analysis of disease severity of Fusarium ear rot on 17 hybrids and 14 lines of maize in 2010 |
|---------------|-----------------|---------------|---------------|-----------------|-----------------|
| S.O.V Sources of variety | df. | Mean square (Ear rot) | S.O.V Sources of variety | df. | Mean square (Ear rot) |
| Rep | 2 | 28.61** | Rep | 2 | 229.81** |
| Hybrid | 16 | 21.46** | Line | 13 | 873.37** |
| Error | 32 | 2.88 | Error | 26 | 46.17 |

** and ns: Significant at 1% level and nonsignificant difference

| Table 4. Mean comparison and categorizing of maize lines and hybrids to Fusarium ear rot in 2010 |
|---------------|-----------------|---------------|---------------|---------------|-----------------|
| No. | Lines | Mean of disease severity, % | Reaction | Hybrids | Mean of disease severity, % | Reaction |
| 1 | K3547/3 | 10' | R* | K 166B X K18 | 10' | R* |
| 2 | K3544/5 | 30.7* | S | K 74/2-1-4-2-1-1 X K18 | 12.3' | MR |
| 3 | K18 | 10' | R | K166B X Mo17 | 11' | MR |
| 4 | K3651/1 | 17.7' | MR | K 3673/1 X K18 | 11.3' | MR |
| 5 | K3545/6 | 31.7* | S | KSC700 | 10.7' | MR |
| 6 | KLM77002/10-1-1-1-1-1-2-3 | 55.3' | HS | K SC704 | 21' | MR |
| 7 | A679 | 30.3' | S | KSC706 | 11.3' | MR |
| 8 | K166A | 18.3' | MR | KSC720 | 13.3' | MR |
| 9 | K3547/5 | 12.7' | MR | KSC705 | 13' | MR |
| 10 | K74/1 | 51.3' | HS | KSC670 | 11.7' | MR |
| 11 | K19 | 60' | HS | K3653/2 XK19/1 | 12.3' | MR |
| 12 | MO17 | 35.3' | S | K3653/2 XK18 | 8.3' | R |
| 13 | K19/1 | 10.7' | MR | K3653/2 XMO17 | 10.3' | MR |
| 14 | K1264/1 | 16.7' | MR | K3640/3 X K18 | 13' | MR |
| 15 | K3640/3 X K19 | 10.7' | MR |
| 16 | K 3640/3 X K19/1 | 13.7' | MR |
| 17 | K 3547/3 X K1264/1 | 14' | MR |

*R = Resistant, S = Susceptible, MR = Moderately Resistant
Different letters in each column show significant difference at %5 probability (DMRT)
ear rot. It was cleared that disease severity can be considered a suitable and stable index for evaluating of resistance of varieties to Fusarium ear rot. In this experiment 36 corn Iranian varieties and 36 inbred lines were evaluated under artificial inoculation techniques to create a nail punch in the ear. Six cultivars (K 3640/3 X MO17, K 3547/4 X MO17, K 168B X K18 , K166B X K19/1, K 168B X K18 and K3653/2 X K18) and three inbred lines (K18, KLM7700777-2-6-3-1-2-1 and K3547/3) were R (resistant). Although many researches have been conducted to control Fusarium ear rot, using resistant or tolerant cultivars seems the most effective method for controlling the disease. It is hoped that, along using all facilities and applying the latest scientific achievements in this area together with indentifying resistant cultivars and compounds, an improved coherent and strategic program shall be conducted in the country so that a suitable solution will be obtained to control the disease. In general, disease development in this method (Nail punch) and its facility of applying in corn fields could be an accurate assessment for breeders to release the best and most resistant hybrids for introducing to farmers. Therefore, further investigations should be conducted to determine resistant cultivars to Fusarium ear rot in Iran. It is recommended that farmers and extension experts applied resistant varieties for cultivation.

Acknowledgements

This project was supported financially by the Agricultural and Natural Resources Research Center of Mazandaran highly appreciated.

References

Koehler B. 1942. Natural mode of entrance of fungi into corn ears and some symptoms that indicate infection. Journal of Agricultural Research, 64, 421-442.

Sheldon JL. 1904. A corn mold (Fusarium moniliforme n.sp.). Agricultural Experimental Station of Nebraska. 17th Annual Report, 23-32.

CONTENTS

Review

Molecular mechanisms and new strategies to fight stresses in egg-producing birds
E. Shatskikh, E. Latypova, V. Fisinin, S. Denev, P. Surai

Genetics and Breeding

Gene action in the inheritance of date to ear emergence and time to physiological maturity in bread wheat crosses (Triticum aestivum L.)
N. Tsenov, T. Gubatov, E. Tsenova

Productivity and stability of the yield from common winter wheat cultivars developed at IPGR Sadovo under the conditions of Dobrudzha region
P. Chamurliyski, E. Penchev, N. Tsenov

Effect of black (stem) rust (Puccinia Graminis F.SP. Tritici) attack to the spike characteristics in Polishwheat (Triticum Polonicum L.)
H. Stoyanov

Analysis of DNA polymorphism of CAST gene in Local Karnobat and Stara Zagora sheep breeds
D. Hristova, S. Georgieva, S. Tanchev

Correlation between grain yield and yield components in winter barley varieties
N. Markova Ruzdik, D. Valcheva, D. Vulchev, Lj. Mihajlov, I. Karov, V. Ilieva

Genetic diversity in different accessions of oat (Avena sativa L.)
T. Savova, B. Dyuльgerova, G. Panayotova

Interspecific hybridization in cotton and its use in breeding
A. Stoilova, I. Saldzhiev

Influence of the direction of crossing on heterosis and transgression events in relation to the length of the vegetative period of Burley tobaccos variety group
Y. Dyuльgerski, T. Radoukova, L. Dospatliiev

Nutrition and Physiology

The performance of female dairy calves fed texturized starters with different protein sources
E. Yavuz, N. Todorov, G. Ganchev, K. Nedelkov

Feeding value estimation of spring forage pea (Pisum sativum L.) in organic cultivation
I. Nikolova, N. Georgieva, Y. Naydenova

Production Systems

Treatment of post harvest residues with cellulose decomposing preparations
I. Effect on grain yield from wheat
G. Milev, I. Iliev, A. Ivanova
Seasonal dynamics of important for *Coriandrum sativum* virus pathogens
B. Dikova, H. Lambev

Crop relationship "yield-evapotranspiration" for green bean
R. Kalaydzhiieva, D. Davidov, A. Matev, V. Kuneva

Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation
P. Yankov, M. Nankova, M. Drumeva, D. Plamenov, B. Klochkov

Agriculture and Environment

Assessment of Bulgarian Black Sea coastal water using the biological quality element phytoplankton
D. Petrova, D. Gerdzhikov

Evaluation on reaction of late maturing maize hybrids and lines to *Fusarium* ear rot
M. Haddadi, M. Zamani

Contemporary state of macrophytobenthos along the Bulgarian coast of the Black Sea
D. Petrova, V. Vachkova, D. Gerdzhikov

Bioconversion of nitrogen in eco-technical system for eggs production
A. Gencheva

Mixed viral infections in tomato as a precondition for economic loss
N. Petrov

Product Quality and Safety

Storage and its effect on the antioxidant capacity of dried Bulgarian *Chrysanthemum balsamita* L.
A. Popova, D. Mihaylova, I. Alexieva

Correcting the breadmaking quality of flour damaged by Sunn pest (Eurygaster integriceps) by using apple pectin
I. Stoeva

Investigation the influence of dietary fiber on the rheological properties of alginate beads
Z. Manev, N. Petkova, P. Denev, D. Ludneva, S. Zhelyazkov

Occurrence of *Pseudomonas syringae* pv. tomato in Bulgaria
M. Stoyanova, K. Aleksandrova, D. Ganeva, N. Bogatzevska
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitates the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Бg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Мо, Greek = Gr, Georgian = Геор., Japanese = Ja, Chinese = Ch, Arabic = Ар, etc.)

The following order in the reference list is recommended:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.