Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence.

They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
AGRICULTURAL

SCIENCE AND TECHNOLOGY

2015

An International Journal Published by Faculty of Agriculture, Trakia University, Stara Zagora, Bulgaria
Mixed viral infections in tomato as a precondition for economic loss

N. Petrov*

Institute of Soil Science, Agro Technologies and Plant Protection Nikola Pushkarov, 7 Shosse Bankya, 1331 Sofia, Bulgaria

Abstract. Tomato is one of the economically important crops in Bulgaria. Low tomato yields in the country are mostly due to lack of knowledge on sustainable agronomic practices, lack of improved varieties, which are well suited for high yield and resistance to diseases, and also due to damage caused by pests and diseases. Many viruses infect the tomato crop. The object of this research was to identify viruses infecting tomato crops in Bulgaria. The presence or absence of a viral infection in tomato plants was carried out with DAS-ELISA serologic assays with specific polyclonal immunoglobulin G for the relevant plant virus. Most of the tomato plants were infected with one or two viruses and in rare cases with more than two viruses. We found that mixed viral infections caused more severe necrotic damages in the tomato fruits and increased the economic loss compared with mono infections.

Keywords: tomato, mixed plant viral infections

Introduction

Tomato Spotted Wilt Virus (TSWV), Tomato Mosaic Virus (ToMV), Cucumber Mosaic Virus (CMV), Potato Virus Y (PVY) and Pepper Mild Mottle Virus (PMMV) infect different species of the family Solanaceae including tomatoes. These viruses can infect either singly or in combination and infection results in various symptoms, which range from a mild to severe mottle, leaf distortion, necroses of leaves and fruit to extreme plant stunting.

PVY, a member of the genus Potyvirus that infects tomato occurs in several pathotypes (Jones et al., 1991), which are transmitted by aphids in a non-persistent manner. Typical symptoms of PVY in tomato include mosaic, vein chlorosis, mild mottling, dark brown necrosis on leaflets, severe necrosis, leaf curling, and drooping (Jones et al., 1991).

The genus Tospovirus contains viruses, which are very unstable, especially at pH values below 5.5. Viruses of this genus have a characteristic membranous lipoprotein envelope and form cytoplasmic inclusions in plant cells (Green and Kim 1991). TSWV is the only known member of this genus that infects tomato. Mild mutant strains of TSWV exist and have been inoculated in tomato for cross-protection against more severe strains (Gonslaves and Providenti, 1989). The virus is known to cause chlorosis and yellow rings on tomato leaves and fruits. It is transmitted persistently by thrips. Seed transmission also occurs (Jones et al., 1991; Ullman et al., 1996).

PMMV was first described in Italy in 1984. Since then, it has spread and become a significant pathogen of tomato and pepper crops worldwide (Wetter, 1984). It is a member of the genus Tobamovirus (Fauquet, 2005). PMMV infects cultivated pepper plants through seed and soil transmission in the fields, causing severe mosaic symptoms. PMMV is not transmitted by insects. It can be seed borne, consequently, the seedlings can be infected by mechanical contamination from their seed coats during transplanting or other cultural procedures. This is a primary source of infection. Foliar symptoms of PMMV consist of mottling and yellow/green mosaic, while fruit may be small, malformed and mottled, with sunken or raised necrotic spots. Yield loss is considerable when young plants become infected. When the virus contaminates once in a green pepper field by carrying over seed, it is extremely difficult to get rid of it. The virus in infected plants remains as long as green pepper is cultivated continuously in that field, because the plants later become sources to infect newly transplanted young seedlings. The virus is quite stable and highly infectious and is easily spread from plant to plant during normal crop maintenance. Also, the virus can persist in the previous crop in infected pepper debris such as leaves, stems or roots in soil for several months (Agrios, 2005).
Therefore, is necessary to detect viruses on tomato crops in order to take relevant measures to limit their spread and reduce losses from poor quality production caused by viral infections. The object of this research was to identify viruses infecting tomato crops in Bulgaria and to determine damages on plants caused by the virus infections.

Material and methods

The tested tomato plants were from cv. Ideal. DAS-ELISA. The analysis was conducted by the method of Clark and Adams (1977). We used a commercial kit of LOEWE Biochemica GmbH, Sauerlach, Germany. ELISA plates were loaded with antiserum (IgG) for the relevant virus, with dilutions (according to the instructions of the manufacturer) in 0.05 M carbonate buffer. The samples were incubated for 4 hours at 37°C, and the unbound components were washed out with PBS-T buffer for 5 min. All samples were grounded in extraction buffer containing 1% PVP (polyvinyl pyrrolidone) at a ratio of 1:10. The plates were incubated at 4°C for 16 hours. Following the third wash step alkaline phosphatase conjugate for the relevant virus was added and the plates were incubated for 4 hours at 37°C. The used substrate was p-nitrophenyl phosphate (p-nitrophenyl phosphate, Sigma) in diethanolamine buffer (pH 9.8) at a ratio of 1mg/ml. The reaction proceeded in the light at room temperature and was stopped with 3N NaOH. The adsorption of the color reaction was measured at multifunctional detector (DTX 880) at a wavelength of 405 nm. The positive samples had optical density (OD) over the threshold (Cut-off) which was two times the value of the negative control.

RNA extraction from potatoes infected with PVY. Extraction of total RNA was performed with RN Easy Plant Mini Kit (Qiagen, Germany). Extraction was carried out according to the instructions of the manufacturer.

Touch-Down RT-PCR. We used primers PVY Primer 1, 7 and 8 for P1 gene region of the virus (Petrov, 2012), with program modification touch-down. Copy DNA synthesis: denaturation of total RNA (0.05-0.5 μg) at 95°C for 5 min with 10 μl PVY Primer1 primer in a final volume of 10 μl; cooling on ice to avoid renaturation; preparation 15 μl of master mix: 5 μl of 5MMLV-buffer, 2 μl of dNTPs (2mM), 0.5 μl of M-MuLV Reverse transcriptase (200 U/μl), 7.5 μl H2O. Incubation step at 42°C for 60 min. Master mix for the PCR is: 1 μl cDNA, 2.75 μl 10 PCR buffer, 2.2 μl MgCl2 (25 mM), 2.2 μl dNTPs (2 mM), 1 μl PVYPrimer 1 (10 μM), 1 μl PVYPrimer 7 (10 μM), 1 μlPVYPrimer 8 (10 μl), 1 μl Taq DNA-Polymerase (5 U/μl), 12.85 μl H2O. PCR was done in thermo cycler Auto-Q Server (LKB, UK) with following programme: initial denaturation step 3 min 95°C; five cycles 30 sec 92°C, 30 sec 62°C, 90 sec 72°C; five cycles 30 sec 95°C; modification touch-down. Copy DNA synthesis: denaturation of total from TSWV and PMMV. The damages of the tomato plants were

Results

From all tested samples from tomato plants cv. Ideal we received different symptoms. Most of them were mosaics, chlorosis and necrosis of the plant leaves, necrosis on the stems and different necrotic patterns on the fruits. For some of the tomato plants cv. Ideal there were mixed infections from PVY, ToMV and CMV. These three viruses in mix infection caused uneven ripening of tomato fruits and green islands on the surface of the fruits (Figure 1). When peeling the skin of the fruit we noticed clear necrosis under the skin. Later on when the fruits ripen completely the necrotic spots grew in surface, became darker and deeper in the fruits, making the fruits unusable for fresh consumption or the canning industry (Figure 2). Thus damages of the tomato fruits from these plants strongly increased. PVY and CMV mono-infections of tomato plants caused only mosaic and chlorotic symptoms of the leaves, but fruits remained symptomless. In contrast, ToMV mono-infection can cause necrotic symptoms of the fruits. Not of less importance is early fall of the fruits of the infected plants with these three viruses. Thus, both the quantity and quality of the obtained production considerably decreased.

For other tomato plants cv. Ideal there were mixed infections from TSWV and PMMV. The damages of the tomato plants were

Figure 1. Symptoms of tomato fruits infected with mix infection of PVY, CMV and ToMV

Figure 2. Necrosis of tomato fruits infected with mix infection of PVY, CMV and ToMV
milder, but in the fruits these viruses caused severe necrotic patterns which significantly reduced the quality of the tomato fruits and increased losses for the farmers (Figure 3). Necrosis grew and darkened, going into depth of these contaminated fruits.

We found that in mix infections DAS-ELISA values of the tested plant viruses were reduced compared with mono infections. Some tomato samples were infected with PVY, ToMV and CMV (Figure 2), where PVY had the highest virus titer 1.553 and repressed the other two viruses (Figure 4), but they were also present in the same plant in spite of their low virus titer compared with PVY. Thus DAS-ELISA values for ToMV was reduced to 1.234 and for CMV to 0.895. In spite of this reduction of DAS-ELISA values of the different viruses they remained over the cut off value (0.450) proving the presence of mixed viral infection. DAS-ELISA value of the used negative control for the sample buffer was 0.092 showing no virus contamination between samples. PVY in this case dominated as an aphid transmitted virus and suppressed the movement in the same plant of another aphid transmitted virus (CMV) and mechanically transmitted ToMV.

In the plants infected with PMMV and TSWV we received different results from the previous group of samples infected with the three viruses. DAS-ELISA value of PMMV was higher in range –

Figure 3. Necrotic patterns on tomato fruits from cv. Ideal infected with mix infection of TSWV and PMMV

Figure 4. DAS-ELISA results of tomato samples infected with mix infection of PVY, ToMV and CMV

Legend: 1 – tomato leaf sample tested for PVY; 2 – negative control for PVY from the kit; 3 – positive control for PVY from the kit; 4 – negative control for PVY for Sample buffer used; 5 – tomato leaf sample tested for ToMV; 6 – negative control for ToMV from the kit; 7 – positive control for ToMV from the kit; 8 – negative control for ToMV for Sample buffer used; 9 – tomato leaf sample tested for CMV; 10 – negative control for CMV from the kit; 11 – positive control for CMV from the kit; 12 – negative control for CMV for Sample buffer used

Figure 5. DAS-ELISA results for tomato samples infected with mix infection of TSWV and PMMV

Legend: 1 – tomato leaf sample tested for TSWV; 2 – negative control for TSWV from the kit; 3 – positive control for TSWV from the kit; 4 – negative control for TSWV for Sample buffer used; 5 – tomato leaf sample tested for PMMV; 6 – negative control for PMMV from the kit; 7 – positive control for PMMV from the kit; 8 – negative control for PMMV for Sample buffer used

126
3.000 (Figure 5). This was the maximum value for this method. PMMV DAS-ELISA value was three times higher than TSWV and great economic relevance of such mixed infections, there are no suppressed the thrips transmissible TSWV. only available data in tomato focused on with
For confirmation of the results from DAS-ELISA for PVY and for determination of the PVY virus strain we performed Touch-down RT-PCR with specific primers for P1 gene region of the PVY genome. The chosen fragment from P1 enclosed by PVY Primer 1 and PVY Primer 7 gave the product 640 bp for PVYN strain and the gene fragment enclosed by PVY Primer 1 and PVY Primer 8 – 445 bp product for PVYN/NTN strain or 280 bp for PVYNTN strain. We used three samples – from PVY infected tomato leaf, fruit and seed. From these samples we extracted RNA with RNeasy plant mini kit. From this RNA we received cDNA with the PVY Primer. This cDNA we used for Touch-down RT-PCR for determination of the different PVY strains. From all tested samples we received a single positive band of 443 bp product, compared with DNA ladder, which corresponded to PVYN/NTN necrotic group of virus strains (Figure 6). All the controls used in the PCR were clear (without any product) showing that there were no contaminations between the different samples. The result confirmed that tomato cultivar Ideal was infected with PVYN/NTN group strain. The virus strain PVYN/NTN was identified in the leaves, fruits and seeds of the infected tomato plant. This shows a smooth spread of the virus in all parts of the host plant, and especially in the seed which is a prerequisite for its mass distribution in the next year if it is used for planting the seeds of this infested plant.

Discussion

In most cases in the literature scientists report mono infection of the plants. There were some reports of mixed infections in tomato. Mixed infections of PVY and CMV, often carrying its satellite RNA (CMV-satRNA), were detected in commercial fields of tomato crops during the CMV outbreaks that occurred in Italy in the mid-1980s (Gallitelli et al., 1988; Gallitelli, 2000). In spite of the high frequency and great economic relevance of such mixed infections, there are no reports on the interactions between CMV and PVY in this host. The only available data in tomato focused on plants mix-infected with CMV and the Begomovirus sp. Abutilon mosaic virus (Wege and Siegmund, 2007). The amount of damage that plant viruses cause to tomatoes varies, depending on the particular virus or combination of viruses present, the virulence of the virus strains, the susceptibility of the variety, the timing of infection, the abundance of insect vectors, and environmental conditions. Disease incidence can range from a few scattered plants in a field to total crop failure. Mixed infections may cause symptoms that are more severe than either virus might cause alone. Virus diseases are difficult to control because of complex interrelationships among virus, host, vector, virus source, RNA we received cDNA with the PVY Primer. This cDNA we used for Touch-down RT-PCR for determination of the different PVY strains. From all tested samples we received a single positive band of 443 bp product, compared with DNA ladder, which corresponded to PVYN/NTN necrotic group of virus strains (Figure 6). All the controls used in the PCR were clear (without any product) showing that there were no contaminations between the different samples. The result confirmed that tomato cultivar Ideal was infected with PVYN/NTN group strain. The virus strain PVYN/NTN was identified in the leaves, fruits and seeds of the infected tomato plant. This shows a smooth spread of the virus in all parts of the host plant, and especially in the seed which is a prerequisite for its mass distribution in the next year if it is used for planting the seeds of this infested plant.

Figure 6. Touch down RT-PCR for P1 gene region of PVY, 443 bp (N/NTN strain)
Legend: 1 – GeneRuler 100bp Plus DNA Ladder; 2 – 443 bp product from P1 gene region of PVY received from infected tomato leaf sample; 3 – 443 bp product from P1 gene region of PVY received from infected tomato fruit sample; 4 – 443 bp product from P1 gene region of PVY received from infected tomato seed sample; 5 – negative control from PCR master mix; 6 – negative control from healthy tomato leaf; 7 – negative control from healthy tomato seed

Conclusion

From all infected tomato plants from the cv. Ideal we received different results. There were some plants infected with one virus but most of them were infected with more than one virus. Mono infections did not affect so seriously quality and quantity of the fruit production, but the infected plants were virus reservoirs. Mixed viral infections in tomato led to major damage on fruit and loss of production. Testing the seeds and seedlings could prevent
distribution of these infections.

Acknowledgements

The study was financially supported by Bulgarian Science Fund with contract ДНТС/ИНДИЯ 01/1 for bilateral collaboration project with India.

References

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>Molecular mechanisms and new strategies to fight stresses in egg-producing birds</td>
<td>3</td>
</tr>
<tr>
<td>E. Shatskikh, E. Latypova, V. Fisinin, S. Denev, P. Surai</td>
<td></td>
</tr>
<tr>
<td>Genetics and Breeding</td>
<td></td>
</tr>
<tr>
<td>Gene action in the inheritance of date to ear emergence and time to physiological maturity in bread wheat crosses (Triticum aestivum L.)</td>
<td>11</td>
</tr>
<tr>
<td>N. Tsenov, T. Gubatov, E. Tsenova</td>
<td></td>
</tr>
<tr>
<td>Productivity and stability of the yield from common winter wheat cultivars developed at IPGR Sadovo under the conditions of Dobrudzha region</td>
<td>19</td>
</tr>
<tr>
<td>P. Chamurliyiski, E. Penchev, N. Tsenov</td>
<td></td>
</tr>
<tr>
<td>Effect of black (stem) rust (Puccinia Graminis F.SP. Tritici) attack to the spike characteristics in Polishwheat (Triticum Polonicum L.)</td>
<td>25</td>
</tr>
<tr>
<td>H. Stoyanov</td>
<td></td>
</tr>
<tr>
<td>Analysis of DNA polymorphism of CAST gene in Local Karnobat and Stara Zagora sheep breeds</td>
<td>36</td>
</tr>
<tr>
<td>D. Hristova, S. Georgieva, S. Tanchev</td>
<td></td>
</tr>
<tr>
<td>Correlation between grain yield and yield components in winter barley varieties</td>
<td>40</td>
</tr>
<tr>
<td>N. Markova Ruzdik, D. Valcheva, D. Vulchev, Lj. Mihajlov, I. Karov, V. Ilieva</td>
<td></td>
</tr>
<tr>
<td>Genetic diversity in different accessions of oat (Avena sativa L.)</td>
<td>45</td>
</tr>
<tr>
<td>T. Savova, B. Dylgerova, G. Panayotova</td>
<td></td>
</tr>
<tr>
<td>Interspecific hybridization in cotton and its use in breeding</td>
<td>49</td>
</tr>
<tr>
<td>A. Stoilova, I. Salzhieiev</td>
<td></td>
</tr>
<tr>
<td>Influence of the direction of crossing on heterosis and transgression events in relation to the length of the vegetative period of Burley tobaccos variety group</td>
<td>61</td>
</tr>
<tr>
<td>Y. Dylgerski, T. Radoukova, L. Dospatliev</td>
<td></td>
</tr>
<tr>
<td>Nutrition and Physiology</td>
<td></td>
</tr>
<tr>
<td>The performance of female dairy calves fed texturized starters with different protein sources</td>
<td>65</td>
</tr>
<tr>
<td>E. Yavuz, N. Todorov, G. Ganchev, K. Nedelkov</td>
<td></td>
</tr>
<tr>
<td>Feeding value estimation of spring forage pea (Pisum sativum L.) in organic cultivation</td>
<td>71</td>
</tr>
<tr>
<td>I. Nikolova, N. Georgieva, Y. Naydenova</td>
<td></td>
</tr>
<tr>
<td>Production Systems</td>
<td></td>
</tr>
<tr>
<td>Treatment of post harvest residues with cellulose decomposing preparations</td>
<td>77</td>
</tr>
<tr>
<td>I. Effect on grain yield from wheat</td>
<td></td>
</tr>
<tr>
<td>G. Milev, I. Iliev, A. Ivanova</td>
<td></td>
</tr>
</tbody>
</table>
Seasonal dynamics of important for *Coriandrum sativum* virus pathogens
B. Dikova, H. Lambev
83

Crop relationship "yield-evapotranspiration" for green bean
R. Kalaydzhieva, D. Davidov, A. Matev, V. Kuneva
87

Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation
P. Yankov, M. Nankova, M. Drumeva, D. Plamenov, B. Klochkov
94

Agriculture and Environment

Assessment of Bulgarian Black Sea coastal water using the biological quality element phytoplankton
D. Petrova, D. Gerdzhikov
98

Evaluation on reaction of late maturing maize hybrids and lines to *Fusarium* ear rot
M. Haddadi, M. Zamani
108

Contemporary state of macrophytobenthos along the Bulgarian coast of the Black Sea
D. Petrova, V. Vachkova, D. Gerdzhikov
112

Bioconversion of nitrogen in eco-technical system for eggs production
A. Gencheva
118

Mixed viral infections in tomato as a precondition for economic loss
N. Petrov
124

Product Quality and Safety

Storage and its effect on the antioxidant capacity of dried Bulgarian *Chrysanthemum balsamita* L.
A. Popova, D. Mihaylova, I. Alexieva
129

Correcting the breadmaking quality of flour damaged by Sunn pest (*Eurygaster integriceps*) by using apple pectin
I. Stoeva
133

Investigation the influence of dietary fiber on the rheological properties of alginate beads
Z. Manev, N. Petkova, P. Denev, D. Ludneva, S. Zhelyazkov
137

Occurrence of *Pseudomonas syringae* pv. tomato in Bulgaria
M. Stoyanova, K. Aleksandrova, D. Ganeva, N. Bogatzevska
141
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should not be more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
The text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Todorov N and Mitev J. 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IX International Conference on Production Diseases in Farm Animals, September 11–14, Berlin, Germany.

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

