Scope and policy of the journal

Agricultural Science and Technology /AST/ – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora
Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editor-in-Chief
Tsanko Yablanski
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Co-Editor-in-Chief
Radoslav Slavov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections

Genetics and Breeding
Atanas Atanasov (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothschild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Bojin Bojinov (Bulgaria)
Stoicho Metodiev (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Zervas Georgios (Greece)
Ivan Varlyakov (Bulgaria)

Production Systems
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Dimitar Panaiotov (Bulgaria)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Georgi Petkov (Bulgaria)
Ramesh Kanwar (USA)
Martin Banov (Bulgaria)

Product Quality and Safety
Marin Kabakchiev (Bulgaria)
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)

English Editor
Yanka Ivanova (Bulgaria)
AGRICULTURAL
SCIENCE AND TECHNOLOGY

2015

An International Journal Published by Faculty of Agriculture,
Trakia University, Stara Zagora, Bulgaria
Investigation the influence of dietary fiber on the rheological properties of alginate beads

Z. Manev*, N. Petkova†, P. Denev*, D. Ludneva†, S. Zhelyazkov†

*Food Research and Development Institute, 154 Vasil Aprilov, 4003 Plovdiv, Bulgaria
†Department of Organic Chemistry, Technological Faculty, University of Food Technologies, 26 Maritza, 4002 Plovdiv, Bulgaria

Abstract. During the current investigation experiments for the preparation of alginate beads with aqueous solutions of sodium alginate, calcium lactate or calcium dichloride and dietary fiber in different concentrations: inulin with varying degrees of polymerization, wheat bran and amidated apple pectin were carried out. The sodium alginate solutions were at constant concentration 3%, while calcium salts in 7% were applied for bead formation. It was proven that the rupture force of alginate beads was always higher than the pure model system regardless of the chemical structure of dietary fibers used. In the result of the carried research the dependence at a certain concentration was established at which the rupture force and deformation of the beads increased gradually.

Keywords: alginate beads, rheology, dietary fiber

Introduction

Alginic acid is a major structural component in the cell wall of brown seaweeds (Phaeophyceae). These marine algae are also primary source for alginate production - Na, Ca, K and Mg salts of alginic acid. The calcium alginate is water soluble and it is used as a gelling agent for food purposes. The sequence of mannuronic and guluronic residues significantly affects the physicochemical properties of alginates. The gelling force depends on the ratio between β-D-mannuronic acid and α-L-guluronic acid residues. The lower ratio of mannuronic block to guluronic block leads to the highest gelling ability of alginate (Kloareg and Quatrano, 1988; Perez, 1992; Draget et al., 2006). Jelly structures for food are formed from alginic acid in the presence of multivalent ions, because these ions are less toxic (Nussinovitch, 1997). As sources of these ions calcium dichloride dihydrate or calcium lactate are often used.

Scientific investigations show that wheat bran possesses a beneficial effect on the prevention of the disease, including colon cancer, obesity, constipation and irritable bowel syndrome (Fardet et al., 2010). Moreover, as regards the health of our digestive system, wheat bran can offer several beneficial effects. Wheat bran has an effect on faecal bulking, delays gastric emptying and accelerates small bowel transit (McIntyre et al., 1997).

Inulin is reserve polydisperse plant polysaccharide, member of the fructan family. Its backbone consists mainly of β-(2→1) fructofuranosyl units (Fm) and a terminal α-glycopyranose unit (1→2) (GFm) (Van Laere and Van Den Ende, 2002; Lingyun et al., 2007). The degree of polymerization (DP) of inulin varies from 2 to 70 (De Leenheer and Hoebregs, 1994). Molecules with DP between 2 and 12 are called oligofructoses or fructooligosaccharides (FOSs) and they are a subgroup of inulin (Frank, 2002; Van Laere and Van Den Ende, 2002; Reiffova and Nemcova, 2006). Inulin and FOSs are classified as soluble dietary fiber. Due to the absence of enzyme in human and animal organisms, which can hydrolyze the β-glycoside bounds in the chain, these inulin-type frutans are not absorbed or metabolized in the stomach and small intestine and reach the large intestine unchanged. They act as prebiotics, because they stimulate the growth of Bifidobacteria, which ferment inulin and FOSs into short-chain fatty acid (SCFA), mostly acetic, propionic acid, and gases (Gibson and Roberfroid, 1995; Reiffova and Nemcova, 2006). The health benefits of inulin intake are connected with its action on human organisms. They lower cholesterol and glucose levels, it is also considered to possess immunomodulation properties and to be an anticancer agent (Barclay et al., 2010). It is used in food production as stabilizer, texture modifier, but FOSs is also and sweetener, because of its taste. The improvement of the technological properties of foods and the importance for human health made inulin and FOS commonly used in food industry. High DP inulin is used in food production as stabilizer, texture modifier, but FOSs is also a sugar replacement, because of its sweet taste (Frank, 2002).

Pectic polysaccharides are also classified as insoluble dietary fibers. Amidated pectins are low methyl esterified pectin obtained from high methoxyl pectin when ammonia is used in the alkaline de-esterification process (Axelos and Thibault, 1991; Alonso-Mougan et al., 2002; Tho et al., 2005). It is considered that amidated pectins in the presence of calcium ions form gels, whose mechanism of gelation relies on the well-known “egg-box” model. The formation of hydrogen bonds between the amide groups leads to additional stabilization of pectic chains in the gel structure (Alonso-Mougan et al., 2002).

The aim of the current study is to investigate the influence of different types of dietary fiber on rheological properties – the rupture force and deformation force of the alginate beads measured by texture analyzer.

Material and methods

In the current study water soluble sodium alginate P. I. C. Co (Grindsted Alginate FD 120) for food purposes characterized by pH = 7 and viscosity – 35 mPa.s were used. Two sources of calcium ions - analytical grade calcium lactate and CaCl₂ (Raychim Ltd.) were applied for preparation of alginate beads. Dietary fibers incorporated in beads were wheat bran (Bioset quality) and
amidated pectin, both of them labeled for food purposes and with high quality. Amidated apple pectin was characterized with degree of esterification (DE) – 42.75%, degree of amidation (DA) – 23.08% and anhydro-galacturonic acid content (AGA) – 60.10%. In the current study inulin with different degree of polymerization (DP) (average DP 7, 12 and 22) was also encapsulated in alginate gel: fructooligosaccharides Frutafit® CLR with DP 7-9, inulin Frutafit® HD (DP 9-12) and Frutafit® TEX 22 (Rosendaal, The Netherlands), respectively.

To evaluate the gel strength of the obtained alginate beads the rupture force and their deformation force were measured by texture analyzer (TA.XT, plus Stable Micro Systems, England). Rheological measurements were carried out with texture analyzer (dynamometer and penetrometer). The mechanical properties were examined in uniaxial extension as a function of deformation. The constant speed for deformation was 0.5 mm by aluminum cylinder with diameter 25 mm. The samples were measured in eighteen replicates for better reproducibility.

Common rheological properties were measured with the above described texture analyzer to evaluate the gel strength of biopolymer as kappa carraginan and inulin (Harilaos et al., 2012). Texture analyzer (TA.XT, plus Stable Micro Systems) was used for evaluation of rheological properties of pectin-polycation crosslinked films (Marudova et al., 2010). Penetrometer (TA.XT, plus Stable Micro Systems) found application in analysis of mechanical properties of multilayer beads with chitosan and carrageenan (Marudova and Zsivanovits, 2009).

A determination of the rupture force and deformation force of the alginate beads was accomplished by response surface methodology and the corresponding parameters of the gelation, namely the concentration of sodium alginate 3%, calcium chloride and calcium lactate both with concentration 7%, inulin with different degree of polymerization and gelling time of 4h at room temperature.

Results and discussion

On Figure 1 were shown the change of the rupture force and deformation in the alginate beads (gels) prepared with 3% water solutions of sodium alginate, inulin with different degree of DP added in various concentrations and 3% calcium lactate (C6H10O6Ca). From the presented results, it was established that regardless of DP of the added inulin in the concentrations of 6% to 12% in the alginate beads, the rupture force of alginate gels gradually reduced. Regardless of the type of encapsulated inulin it was observed that by increasing the concentration from 12% to 24%, the rupture force smoothly increases as a result of an increase in viscosity properties of the solutions and their plasticising effect. This evidence could be explained with the fact that with the increase in the content of inulin in the k-carrageenan gel it act as a plasticizer, to enhance the viscosity properties of the material (Nickerson and Paulison, 2005; Loret et al., 2009).

From the obtained data it can be seen that by increasing DP of the added inulin at a concentration of 24% deformation increases from 2.7 to 3.3 mm. The relative residual deformation increases in the same manner by inulin addition to the k-carrageenan gel because of the plasticizing effect of inulin and improvement of the viscoelastic behavior of the gels (Harilaos et al., 2012).

Figure 2 represents the changing of rupture force and deformation of alginate beads obtained by the combination of water solutions of 3% sodium alginate with added wheat bran and 7% calcium lactate (C6H10O6Ca) (Figure 2a) and 3% sodium alginate with wheat bran and 7% CaC (Figure 2b). From the obtained results the lowest rupture force (3.3N) and deformation 2.0 mm were received for beads with 6% wheat bran added (Figure 2b). Moreover, on the same figure it was observed that the alginate beads characterized with the highest level of deformation force 3.5 mm when wheat bran was added in concentration from 12% to 15%. At equal increase in the concentration of wheat bran from 6% to 12% could be observed that the rupture force increased 2 times (Figure 2a) or 4 times (Figure 2b), respectively. This difference in incenement of the rupture force of the alginate beads could be explained by the fact that various
calcium salts used in experiments have different content of calcium ions. Added calcium dichloride has double high concentration of calcium ions (27.26%) compared to calcium lactate (13.0%). The deformation and the rupture force increased 1.5-fold (Figure 2b) by the addition of wheat bran within a certain concentration range (9% – 15%) in comparison to the pure model system (3% sodium alginate + 7% CaCl₂). This fact is due to the high content of insoluble dietary fiber as cellulose and polymers based on arabinose and xylose according to Sramkova et al. (2009) with a strong chemical structure, which increased the strength of the alginate beads prepared with wheat bran.

On Figure 3 were shown the changes in rupture force and deformation of alginate beads prepared with moderate-esterified amidated apple pectin. From the obtained results, it was found that the addition of amidated pectin of 0.5% to 2% improved the textural properties of alginate beads (the rupture force and deformation increased).

Figure 2. Rupture force (-) and deformation (---) of alginate beads with calcium lactate and calcium chlorides as a function of concentration of wheat bran: a. 3% Na - alginate + wheat bran and 7% C₆H₁₁O₇Ca; b. 3% Na - alginate + wheat bran and 7% CaCl₂.

Figure 3. Rupture force (-) and deformation (---) of pectin-alginate beads in function of concentration of amidated pectin

At higher concentration (2 to 3%) of moderate-esterified amidated pectin destructive effect on the texture of the gelled system was observed (beads of sodium alginate with amidated pectin). A similar effect was observed with the addition of 1% amidated low esterified pectin to fish mince of Mexican halibut, which leads to increase in the textural properties and destructive effects of the system (Uresti et al., 2003).

Conclusion

Regardless of the type of the added dietary fiber (inulin, wheat bran or amidated pectin) in alginate beads, the rupture force is always higher than the same force in a model system with calcium lactate. It was found that the rupture force of alginate beads prepared with wheat bran increased significantly in certain concentration ranges using different sources of calcium ions. At 3% concentration of dietary fiber, irrespectively of their type (wheat bran, amidated pectin and inulin) incorporated in the alginate beads in the following order Figure 2b, Figure 2a, Figure 3, Figure 1c and Figure 1b, their rupture and deformation forces increase gradually.

References

Harlaos K, Zsivanovits G and Marudova M, 2012. Rheological characteristics of K - carrageenan in the presence of polymers inulin. Scientific papers of University Paisii Hilendarski, Plovdiv, Bulgarian physics, 37, 64-68 (Bg).

Kloareg B and Quatrano RS, 1988. Structure of the cell walls of marine algae and ecophysiological functions of the matrix
Nickerson MT and Paulson AT, 2005. Time-temperature studies of \(\kappa \)-carrageenan gelation in the presence of high levels of co-solutes. Carbohydrate Polymers, 61, 231-237.
Review

Molecular mechanisms and new strategies to fight stresses in egg-producing birds
E. Shatskikh, E. Latypova, V. Fisinin, S. Denev, P. Surai

Genetics and Breeding

Gene action in the inheritance of date to ear emergence and time to physiological maturity in bread wheat crosses (*Triticum aestivum* L.)
N. Tsenov, T. Gubatov, E. Tsenova

Productivity and stability of the yield from common winter wheat cultivars developed at IPGR Sadovo under the conditions of Dobrudzha region
P. Chamurliyski, E. Penchev, N. Tsenov

Effect of black (stem) rust (*Puccinia Graminis F.SP. Tritici*) attack to the spike characteristics in Polish wheat (*Triticum Polonicum* L.)
H. Stoyanov

Analysis of DNA polymorphism of CAST gene in Local Karnobat and Stara Zagora sheep breeds
D. Hristova, S. Georgieva, S. Tanchev

Correlation between grain yield and yield components in winter barley varieties
N. Markova Ruzdik, D. Valcheva, D. Vulchev, Lj. Mihajlov, I. Karov, V. Ilieva

Genetic diversity in different accessions of oat (*Avena sativa* L.)
T. Savova, B. Dylugerova, G. Panayotova

Interspecific hybridization in cotton and its use in breeding
A. Stoilova, I. Saldzhiev

Influence of the direction of crossing on heterosis and transgression events in relation to the length of the vegetative period of Burley tobaccos variety group
Y. Dyulgerski, T. Radoukova, L. Dospatliev

Nutrition and Physiology

The performance of female dairy calves fed texturized starters with different protein sources
E. Yavuz, N. Todorov, G. Ganchev, K. Nedelkov

Feeding value estimation of spring forage pea (*Pisum sativum* L.) in organic cultivation
I. Nikolova, N. Georgieva, Y. Naydenova

Production Systems

Treatment of post harvest residues with cellulose decomposing preparations
I. Effect on grain yield from wheat
G. Milev, I. Iliev, A. Ivanova
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal dynamics of important for Coriandrum sativum virus pathogens</td>
<td>83</td>
</tr>
<tr>
<td>B. Dikova, H. Lambev</td>
<td></td>
</tr>
<tr>
<td>Crop relationship "yield-evapotranspiration" for green bean</td>
<td>87</td>
</tr>
<tr>
<td>R. Kalaydzhieva, D. Davidov, A. Matev, V. Kuneva</td>
<td></td>
</tr>
<tr>
<td>Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation</td>
<td>94</td>
</tr>
<tr>
<td>P. Yankov, M. Nankova, M. Drumeva, D. Plamenov, B. Klochkov</td>
<td></td>
</tr>
<tr>
<td>Agriculture and Environment</td>
<td></td>
</tr>
<tr>
<td>Assessment of Bulgarian Black Sea coastal water using the biological quality element phytoplankton</td>
<td>98</td>
</tr>
<tr>
<td>D. Petrova, D. Gerdzhikov</td>
<td></td>
</tr>
<tr>
<td>Evaluation on reaction of late maturing maize hybrids and lines to Fusarium ear rot</td>
<td>108</td>
</tr>
<tr>
<td>M. Haddadi, M. Zamani</td>
<td></td>
</tr>
<tr>
<td>Contemporary state of macrophytobenthos along the Bulgarian coast of the Black Sea</td>
<td>112</td>
</tr>
<tr>
<td>D. Petrova, V. Vachkova, D. Gerdzhikov</td>
<td></td>
</tr>
<tr>
<td>Bioconversion of nitrogen in eco-technical system for eggs production</td>
<td>118</td>
</tr>
<tr>
<td>A. Gencheva</td>
<td></td>
</tr>
<tr>
<td>Mixed viral infections in tomato as a precondition for economic loss</td>
<td>124</td>
</tr>
<tr>
<td>N. Petrov</td>
<td></td>
</tr>
<tr>
<td>Product Quality and Safety</td>
<td></td>
</tr>
<tr>
<td>Storage and its effect on the antioxidant capacity of dried Bulgarian Chrysanthemum balsamita L.</td>
<td>129</td>
</tr>
<tr>
<td>A. Popova, D. Mihaylova, I. Alexieva</td>
<td></td>
</tr>
<tr>
<td>Correcting the breadmaking quality of flour damaged by Sunn pest (Eurygaster integriceps) by using apple pectin</td>
<td>133</td>
</tr>
<tr>
<td>I. Stoeva</td>
<td></td>
</tr>
<tr>
<td>Investigation the influence of dietary fiber on the rheological properties of alginate beads</td>
<td>137</td>
</tr>
<tr>
<td>Z. Manev, N. Petkova, P. Denev, D. Ludneva, S. Zhelyazkov</td>
<td></td>
</tr>
<tr>
<td>Occurrence of Pseudomonas syringae pv. tomato in Bulgaria</td>
<td>141</td>
</tr>
<tr>
<td>M. Stoyanova, K. Aleksandrova, D. Ganeva, N. Bogatzevska</td>
<td></td>
</tr>
</tbody>
</table>
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter and without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *

Abstract should not be more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to a maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs should be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Serbian = Sr, if in the Cyrillic, Mongolian = Мо, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)