Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editor-in-Chief
Tsanko Yablanski
Faculty of Agriculture
Trakia University, Stara Zagora Bulgaria

Co-Editor-in-Chief
Radoslav Slavov
Faculty of Agriculture
Trakia University, Stara Zagora Bulgaria

Editors and Sections
Genetics and Breeding
Atanas Atanasov (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothschild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Bojin Bojinov (Bulgaria)
Stoicho Metodiev (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Zervas Georgios (Greece)
Ivan Varlyakov (Bulgaria)

Production Systems
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Dimitar Panaiotov (Bulgaria)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Georgi Petkov (Bulgaria)
Ramesh Kanwar (USA)
Martin Banov (Bulgaria)

Product Quality and Safety
Marin Kabakchiev (Bulgaria)
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)

English Editor
Yanka Ivanova (Bulgaria)
Influence of fertilization and sowing density on grain production of *Sorghum bicolor* L., in the climatic conditions of Central Moldavia, Romania

S. Pochișcanu*, T. Robu, A. Gherasim, M. Zaharia

Department of Plant Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 3 Mihail Sadoveanu Alley, 700490 Iași, Romania

Abstract. Specialists in the USA, European Union, Japan, Australia, China, etc., investigating industrial exploitation of biomass used in all forms and all adequate technologies. In this context appeared "stars biomass", of which emerges, first, to the temperate continental sorghum, known and used for many years in the USA, China, Italy and France. Improvement of some technological sequences cultivation of sorghum, is a matter of great importance to our country, in order to obtain high yields, to provide the necessary food, feed raw material in the production of bioethanol, considered a fuel of the future. Experiences has been located in the specific climatic conditions of Secuieni, Central Moldavia, bifactorial type. The biological matherial used were hybrids F32, Armida, Alize, Quebec and KSH2G06. Mineral fertilizers applied to grain sorghum crop, increased grain production. Vation in grain production in grain sorghum varies depending on hybrid and the influence of fertilization. Using higher seeding densities cause significant production increases in grain sorghum, and the production level depends of cultivated hybrid and climatic conditions. The results of this study are part of a doctoral program, funded by the Ministry of Education Youth and Sports research, the IOSUD USAMV Iași.

Keywords: grain sorghum, grain production, fertilization, hybrids, sowing density

Introduction

The climatic evolution towards heating and aridization for the 2001 – 2050 period of time in the Balkan area, where Romania is also found, compels to a reconsideration of the sorghum as: alimentary cereal (beads used in the formula for composite flours destined for gluteic and agluteic panification, the sweet juice extracted from the body, used for making syrup, vinegar and other alimentary products), fodder plant (under the shape of green mass, hay, silo), technical plant (stationary and textile celluloses, plastic material), the industry of construction materials and the handicraft industry (brushes of domestic and industrial use, brooms, nettings).

Specialists of USA, European Union, Japan, Australia, China, etc., seeking solutions for industrial exploitation of biomass used in all forms and all adequate technologies. In this context appeared "stars biomass", of which emerges, first, to the temperate-continental sorghum, known and used for many years in the USA, China, Italy and France.

Water recovery varies from one culture to another, being influenced by climatic conditions (Gumeza et al., 1989; Gumeza and Kleps, 2005; Halvorsen and Johnson, 2009) and technology elements: crop rotation, variety or hybrid, density, tillage, fertilization, weed, disease and pest control, water supply level (Domuța, 2009; Borza, 2006).

Increasing the quantity and quality of production at the current requirements is not possible without the use of fertilizers (Băleanu, 1998; Mihaila et al., 1996; Săulescu, 1967) and sowing density, expressed as the number of g.s. /m², are important because of its positive correlation with the number of plants present in the chain forming plant density at harvest (Ladek and Walkowski, 2000).

The objective of this experiment was to investigate the effect of nitrogen and phosphorus fertilization (four doses) and sowing density (four densities) to five hybrids on grain production of sorghum grain.

* e-mail: simonapoch@yahoo.com

Material and methods

The research was conducted at the Agricultural Research Development Station (ARD) Secuieni, Central Moldavia, Romania, on a typical cambic chernozem soil type, water pH 8.29, 2.3 humus content, nitrogen index 2.1, mobile P O 39 ppm, mobile K O 161 ppm after-plots method in three repetitions.

In the first experiment we tested the influence of four doses of fertilizers with nitrogen and phosphorus (unfertilized, fertilized with nitrogen (N) and phosphorus (P) with the following doses: N₅₀P₅₀; N₁₀₀P₅₀ and N₁₅₀P₅₀) on the production of five hybrids of grain sorghum (Fundulea 32, Armida, Alize, Quebec and KSH 2G06) and in the second experiment we tested the influence of four sowing densities (150.000 grains germinable/ha (g.s./ha), 200.000 g.s./ha, 250.000 g.s./ha and 300.000 g.s./ha) on the production of five hybrids of grain sorghum (Fundulea 32, Armida, Alize, Quebec and KSH, 2006).

To describe the degree of linear association between the production obtained and the doses of fertilizers, experimental densities, we calculated the Pearson correlation coefficient (r). In the experiment we have complied all the technological links, plant precursory was soybean and the data were processed and interpreted statistically by variance analysis method (Ceapoiu, 1968).

Climatic conditions in ARDS Secuieni during the experiment were close to the annual average, but the distribution of rainfall and temperatures during the sorghum growing season was uneven.

Results and discussion

Influence of fertilization on grain production

The fluctuations of the productions were large, productions are varied within very wide limits, from 2910 kg/ha to 10279 kg/ha (Table
The lowest level of production has been with the unfertilized variants. In these variants, yields ranged from 2910 kg/ha and 4185 kg/ha and were influenced by hybrids and favorable climatic conditions. The highest level of production was recorded at the fertilized variants with N\textsubscript{46}P\textsubscript{83} (120 kg/ha nitrogen and phosphorus) dose, variation in yields is between 7043 kg/ha (KSH 2G06) at 10279 kg/ha (Armida) (Table 1). From a statistical point of view, under the fertilizer applied and yields of grain sorghum hybrids obtained very strong direct correlation were recorded, the correlation coefficients interaction very significant production increases occurred, the were statistically very significant (Figure 1). This thing explains the biggest difference in production (6582 kg/ha) was obtained in the high production gains obtained from applying each dose of nitrogen and phosphorus fertilizers and hybrids sown with hybrid variant Armida which an applied dose of N\textsubscript{36}P\textsubscript{83} fertilizer brought about production increases of 2 t/ha.

We observed that between doses of nitrogen and phosphorus fertilizer applied and yields of grain sorghum hybrids obtained very significant production increases very significantly and it was concluded that a dose increase of N\textsubscript{P} fertilizer brought about production increases of 2 t/ha. We can say that hybrids with high adaptability to the Center of Moldovia, Romania are Armida and Fundulea 32 (control). Factor B (fertilization) resulted in production increases very significantly and it was concluded that a dose increase of N\textsubscript{P} fertilizer brought about production increases of 2 t/ha.

Table 1. Influence of fertilization on grain production of *Sorghum bicolor* L.

<table>
<thead>
<tr>
<th>Factor A (Hybrid)</th>
<th>Factor B (Fertilization)</th>
<th>Yield, kg/ha</th>
<th>Difference, kg</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>a\textsubscript{0} (Fundulea 32)</td>
<td>b\textsubscript{0} - N\textsubscript{P}</td>
<td>4165</td>
<td>Control</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{1} - N\textsubscript{46}P\textsubscript{83}</td>
<td>6139</td>
<td>1974</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{2} - N\textsubscript{46}P\textsubscript{83}</td>
<td>7017</td>
<td>2852</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{3} - N\textsubscript{46}P\textsubscript{83}</td>
<td>9668</td>
<td>5503</td>
<td>***</td>
</tr>
<tr>
<td>a\textsubscript{0} (Armida)</td>
<td>b\textsubscript{0} - N\textsubscript{P}</td>
<td>3697</td>
<td>Control</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{1} - N\textsubscript{46}P\textsubscript{83}</td>
<td>6039</td>
<td>2342</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{2} - N\textsubscript{46}P\textsubscript{83}</td>
<td>8705</td>
<td>5008</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{3} - N\textsubscript{46}P\textsubscript{83}</td>
<td>10279</td>
<td>6582</td>
<td>***</td>
</tr>
<tr>
<td>a\textsubscript{0} (Alize)</td>
<td>b\textsubscript{0} - N\textsubscript{P}</td>
<td>2910</td>
<td>Control</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{1} - N\textsubscript{46}P\textsubscript{83}</td>
<td>4757</td>
<td>1847</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{2} - N\textsubscript{46}P\textsubscript{83}</td>
<td>6483</td>
<td>3573</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{3} - N\textsubscript{46}P\textsubscript{83}</td>
<td>8436</td>
<td>5526</td>
<td>***</td>
</tr>
<tr>
<td>a\textsubscript{0} (Quebec)</td>
<td>b\textsubscript{0} - N\textsubscript{P}</td>
<td>3736</td>
<td>Control</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{1} - N\textsubscript{46}P\textsubscript{83}</td>
<td>6023</td>
<td>2287</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{2} - N\textsubscript{46}P\textsubscript{83}</td>
<td>7691</td>
<td>3955</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{3} - N\textsubscript{46}P\textsubscript{83}</td>
<td>8997</td>
<td>5261</td>
<td>***</td>
</tr>
<tr>
<td>a\textsubscript{0} (KSH2G06)</td>
<td>b\textsubscript{0} - N\textsubscript{P}</td>
<td>2925</td>
<td>Control</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{1} - N\textsubscript{46}P\textsubscript{83}</td>
<td>4701</td>
<td>1776</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{2} - N\textsubscript{46}P\textsubscript{83}</td>
<td>6097</td>
<td>3172</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>b\textsubscript{3} - N\textsubscript{46}P\textsubscript{83}</td>
<td>7043</td>
<td>4118</td>
<td>***</td>
</tr>
</tbody>
</table>

Media A	a\textsubscript{0} (Fundulea 32)	6747	Control	-
a\textsubscript{0} (Armida)	7180	933	***	
a\textsubscript{0} (Alize)	5647	-601	000	
a\textsubscript{0} (Quebec)	6612	364	***	
a\textsubscript{0} (KSH2G06)	5191	-1056	***	

Media B	b\textsubscript{0} - N\textsubscript{P}	4334	Control	-
b\textsubscript{1} - N\textsubscript{46}P\textsubscript{83}	5709	2045	***	
b\textsubscript{2} - N\textsubscript{46}P\textsubscript{83}	7377	3912	***	
b\textsubscript{3} - N\textsubscript{46}P\textsubscript{83}	8448	5598	***	

Difference limit for each factor and their interaction

<table>
<thead>
<tr>
<th>DL A (kg/ha)</th>
<th>DL B (kg/ha)</th>
<th>DL BxA (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% = 147</td>
<td>5% = 84</td>
<td>5% = 188</td>
</tr>
<tr>
<td>1% = 214</td>
<td>1% = 114</td>
<td>1% = 254</td>
</tr>
<tr>
<td>0.1% = 321</td>
<td>0.1% = 151</td>
<td>0.1% = 337</td>
</tr>
</tbody>
</table>

230
to 1, which shows that these hybrids really love those two macronutrients.

Influence of sowing density on grain production

Analyzing the influence of sowing density on the yield of sorghum, it appears that a higher density of 15 g.s./m² (grains germinable/square meter) is obtained very significant production increases and the production is influenced by the hybrids and the climatic conditions (Table 2). Density of sowing x hybrid interaction influenced the grain yield, the results are different from the five experimental hybrids and the limits are very wide – from 3293 kg/ha to 9128 kg/ha.

The yields obtained in the control variant, seeded at 150,000 g.s./ha were the lower and ranged from 3293 kg/ha (KSH 2G 06) at 5301 kg/ha (Armide), depending on the hybrids. The maximum yields of all hybrids studied were recorded at a density of 300,000 g.s./ha, their variation is quite small – from 7598 kg/ha to 9128 kg/ha. Hybrids with high adaptability to the Center of Moldova are Fundulea 32 and Armida and the factor B (seeding densities) resulted very significant increases in production and concluded that an increased density of 50,000 g.s/ha bring production increases> 1 t/ha.

The results obtained showed that between density of sowing assured and yields of grain sorghum hybrids obtained were

| Table 2. Influence of sowing density on grain production of *Sorghum bicolor* L. |
|---------------------------------|-----------------|----------------|----------------|----------------|
| Factor A (Hybrid) | Factor B (Density of sowing), g.s./m² | Yield, kg/ha | Difference, kg | Significance |
| b₁, (Fundulea 32) | b₁ – 15 | 4887 | Control | - |
| | b₁ – 20 | 6242 | 1355 | *** |
| | b₁ – 25 | 8482 | 3595 | *** |
| | b₁ – 30 | 9128 | 4241 | *** |
| b₂, (Armida) | b₂ – 15 | 5301 | Control | - |
| | b₂ – 20 | 6070 | 799 | *** |
| | b₂ – 25 | 8001 | 2670 | *** |
| | b₂ – 30 | 8731 | 3430 | *** |
| b₃, (Alize) | b₃ – 15 | 3596 | Control | - |
| | b₃ – 20 | 5122 | 1525 | *** |
| | b₃ – 25 | 6510 | 2913 | *** |
| | b₃ – 30 | 7878 | 4281 | *** |
| b₄, (Quebec) | b₄ – 15 | 4593 | Control | - |
| | b₄ – 20 | 6126 | 1533 | *** |
| | b₄ – 25 | 7550 | 2957 | *** |
| | b₄ – 30 | 8904 | 4311 | *** |

Figure 1. Graphic of correlations established between production obtained at *Sorghum bicolor* L. and doses of fertilizers
recorded very strong direct correlation, the correlation coefficients were statistically distinct significant. This thing explains the high production gains obtained from applying each density of sowing (Figure 2).

Grain yields obtained were influenced by hybrid studied, as well as the fertilizer rates and densities tested, ranging variation in grain yields 2910 kg / ha (KSH 2G06 - unfertilized) and 10279 kg/ha (Armida - \(N\), \(P_\text{control}\)).

The interaction hybrid x fertilizer, the highest level of production was recorded in variants fertilized with \(N\), \(P_\text{control}\) dose in yields is between 7043 kg/ha (KSH 2G06) to 10279 kg/ha (Armida).

The interaction genotype x sowing densities, the highest level of production was recorded at 300.000 variants sown g.s./ha, yields ranged between 3293 kg/ha (KSH 2G06-150000 g.s./ha) to 9128 kg/ha (Fundulea 32-300.000 g.s./ha).

Conclusion

Grain yields obtained were influenced by hybrid studied, as well as the fertilizer rates and densities tested, ranging variation in grain yields 2910 kg / ha (KSH 2G06 - unfertilized) and 10279 kg/ha (Armida - \(N\), \(P_\text{control}\)).

The interaction hybrid x fertilizer, the highest level of production was recorded in variants fertilized with \(N\), \(P_\text{control}\) dose in yields is between 7043 kg/ha (KSH 2G06) to 10279 kg/ha (Armida).

The interaction genotype x sowing densities, the highest level of production was recorded at 300.000 variants sown g.s./ha, yields ranged between 3293 kg/ha (KSH 2G06-150000 g.s./ha) to 9128 kg/ha (Fundulea 32-300.000 g.s./ha).

Figure 2. Graphic of correlations established between production obtained of *Sorghum bicolor* L. and the density of sowing.
density of sowing are direct and very significant and distinct significant.

Acknowledgments

This paper was published under the frame of European Social Fund, Human Resources Development Operational Programme 2007-2013, project no. POSDRU/159/1.5/S/I-132765.

References

Review

Effect of physical form and protein source of starter feed on growth and development of dairy calves
E. Yavuz, G. Ganchev, N. Todorov

Genetics and Breeding

Characterization of Plasmopara viticola isolates from Bulgaria with microsatellite markers
K. Kosev, I. Simeonov, G. Djakova, T. Hvarleva

Total phenol content, antioxidant activity of hip extracts and genetic diversity in a small population of R. canina L. cv. Plovdiv 1 obtained by seed propagation
M. Rusanova, K. Rusanov, S. Stanev, N. Kovacheva, I. Atanassov

Correlation between qualitative-technological traits and grain yield in two-row barley varieties
N. Markova Ruzdik, D. Valcheva, D. Vulchev, Lj. Mihajlov, I. Karov, V. Ilieva

Application of path coefficient analysis in assessing the relationship between growth-related traits in indigenous Nigerian sheep (Ovis aries) of Niger State, Nigeria
S. Egena, D. Tsado, P Kolo, A. Banjo, M. Adisa-Shehu-Adisa

Effect of height of stem on the productivity of winter common wheat
N. Tsenov, T. Gubatov, E. Tsenova

Influence of the direction of crossing on activities of heterosis regarding the height of plants and number of leaves in Burley tobacco hybrids
Ts. Radoukova, Y. Dylgerski, L. Dospaliev

Common winter wheat lines with complex resistance to rusts and powdery mildew combined with high biochemical index
V. Ivanova, S. Doneva, Z. Petrova

Study of emmer (Triticum dicoccum (Schrank) Shuebl.) accessions for traits related to spike productivity and grain quality in connection to durum wheat improvement
K. Taneva, V. Bozhanova, B. Hadziivanova

Phenotypic stability of yield on varieties and lines of durum wheat (Triticum durum Desf.)
R. Dragov, D. Dechev

Classification and regression tree analysis in modeling the milk yield and conformation traits for Holstein cows in Bulgaria
A. Yordanova, S. Gocheva-Ilieva, H. Kulina, L. Yordanova, I. Marinov

Nutrition and Physiology

Potential N-supplying ability of soil depending on the size of soil units under different soil tillage systems
M. Nankova, P. Yankov
Production Systems

Tolerance and own tolerance of wheat under conditions of permanent and long-term rotation
N. Nankov, G. Milev, A. Ivanova, I. Iliev, M. Nankova
221

Influence of fertilization and sowing density on grain production of Sorghum bicolor L., in the climatic conditions of Central Moldavia, Romania
S. Pochişcanu, T. Robu, A. Gherasim, M. Zaharia
229

Effect of locomotor activity of Russian sturgeons (Acipenser Gueldenstaedtii Brandt) on water heat flows in a recirculation system
K. Peychev, Y. Staykov, S. Stoyanova
234

The effect of stocking density on some hydrochemical parameters and growth traits in European perch (Perca fluviatilis L.), cultivated in a recirculation system
G. Zhelyazkov
238

Agriculture and Environment

Agroecological assessment of wastewater from Municipal Wastewater Treatment Plant by physico-chemical parameters
G. Kostadinova, D. Dermendzhieva, G. Petkov, I. Taneva
242

Exploring the yield potential and spike characteristics of tritordeum (×Tritordeum ascherson et graebner) accessions under the conditions of South Dobrodza
H. Stoyanov
250

Effect of amitraz on varroosis in bees (Apis mellifera L.)
K. Gurgulova, I. Zhelyazkova, S. Takova, K. Malinova
260

New data about Crocus olivieri J. Gay on the territory of Sinite Kamani Natural Park, Bulgaria
264

Product Quality and Safety

Near Infrared Spectroscopy and aquaphotomics for monitoring changes during yellow cheese ripening
S. Atanassova
269

Investigation on the technological traits of Bulgarian and imported merino wool batches
D. Pamukova
273
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.).

The following order in the reference list is recommended:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.