Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora Bulgaria
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu
Screening *Pisum* sp. accessions for resistance to *Pseudomonas syringae* pv. *pisi*

M. Koleva*, I. Kiryakov

1Department of Crop Science and Plant Protection, College Dobrich, Konstantin Preslavski University of Shumen, 9300 Dobrich, Bulgaria
2Dobrudzha Agricultural Institute, 9520 General Toshevo, Bulgaria

Abstract. Pea (*Pisum sativum* L.) is a main grain leguminous crop in Bulgaria. Breeding resistant pea varieties is the most economically important method for disease control especially in pea bacterial blight, caused by *Pseudomonas syringae* pv. *pisi*. The investigation was carried out during 2013 – 2014 at Dobrudzha Agricultural Institute, General Toshevo. Forty-eight *Pisum* sp. accessions were used. Two strains of *P. syringae* pv. *pisi* (B24 and NCPPB 2585) were used. The plants were inoculated twice: at phenophase budding (petioles) and grain filling (pod) with bacterial suspension in concentration 1 x 10^8 CFU/ml using 1ml syringe. The reaction of the accessions was read 10 days after inoculation. A nine-degree scale was applied. According to the mean disease index (MDI) the accessions were divided into five groups: immune (I), resistant (R), middle resistant (MR), susceptible (S), very susceptible (VS). Twenty-five *Pisum* sp. accessions had resistant to moderately resistant reaction of leaves and pods to strain NCPPB and twelve accessions to strain B24, respectively. Eleven accessions (including *P. sativum* ssp. *sativum*, *P. humile*, *P. elatius*, *P. s. var. hibernicum*, *P. abyssinicum*, *P. transcaucasicum*, *P. tibetanicum*) had resistant reaction to leaves and pods to both strains which confirms the position for different genetic control of resistance of leaves and pods. The results of our investigation showed that some *Pisum* sp. accessions could be used as a donor parent in a breeding program for bacterial or complex resistance on pea.

Keywords: *Pisum* sp., pea, bacterial blight, *P.s.pv. pisi*

Introduction

Pea (*Pisum sativum* L.) is a main grain leguminous crop in Bulgaria. The size of the yields of pea is determined by a number of abiotic and biotic factors, among which diseases are significant: viral, bacterial and fungal. Among the bacterial diseases, bacterial blight is of the most economic importance. The disease is caused by Gram-negative, aerobe phytopathogen bacteria *Pseudomonas syringae* pv. *pisi*. It is reported for the first time in North America in 1915 (Sackett, 1916), in Europe in 1985 (Grondeau et al., 1996) and in Turkey in 2010 (Benlioglu, 2010). Disease development is favored by autumn or early spring sowing of pea (Mansfield et al., 1997), rainfalls (Roberts, 1997) and temperatures 27 – 28ºC (Saskett, 1916). The bacteria is seed transmitted (Skoric, 1927; Lawyer and Chun, 2001), but it can survive in the soil up to 42 days (Hollaway and Bretag, 1997) and in the plants up to 34 weeks after harvest (Grondeau et al., 1996). Up to now eight races of *P.s. pv. pisi* (Beaven et al., 1995; Elvira-Recuenco et al., 2001; Martin-Sanz et al., 2011) and six race-specific genes for resistance in pea (*P. sativum*) (Beaven et al., 1995) to the pathogen have been identified. In Bulgaria, the disease has insignificant effect on pea production and the investigations on its etiology and epidemiology are limited.

Breeding resistant pea varieties is the most economically important method for disease control especially in pea bacterial blight (Sackett, 1916; Hollaway et al., 2007). The first step in every disease resistance breeding program is screening different accessions among the same and different species of the same genus for finding sources of resistance (Martin et al., 2008). The aim of this investigation was to determine the disease response of some *Pisum* sp. accessions to the cause agent of pea bacterial blight – *P.s. pv. pisi*.

* e-mail: koleva_magdalena@abv.bg

Material and methods

The investigation was carried out during 2013 – 2014 at Dobrudzha Agricultural Institute, General Toshevo. Forty seven *Pisum* sp. accessions were used: 19 – *P. sativum*, 7 – *P. s. subssp. sativum var. arvense, 4 – *P. elatius*, 2 – *P. humile*, 1 – *P. jomardi*, 1 – *P. s. var. hibernicum*, 1 – *P. thebaicum*, 5 – *P. abyssinicum*, 4 – *P. transcaucasicum*, 1 – *P. asiaticum*, 2 – *P. tibetanicum*, provided by Jonh Innes Centre, Variety Kelvedon Wonder was used as a susceptible control (Elvira-Recuenco et al., 2003). The accessions were planted in 1 m rows, 10 plants per row. Two strains of *P. syringae* pv. *pisi* (NCPPB 2585 and B24) originating from Turkey (Benlioglu et al., 2010) were used for inoculation. The strains were cultivated on YDC and stored at 4ºC. The plants were inoculated twice: at phenophase budding (petioles) and grain filling (pods) with bacterial suspension in concentration 1 x 10^8 CFU/ml using 1ml syringe. The reaction of the accessions was read 10 days after inoculation. A nine-degree scale was applied (Figure 1): Leaves: 1 – symptomless; 3 – necrosis around the penetration; 5 – necrosis with water soaked in the spot; 7 – water soaked spot in the place of penetration of the leaf surface; 9 – leaf dead. Pods: 1 – symptomless; 3 – water soaked spots up to 1.0 mm; 5 – water soaked spots 1.1 – 3.0 mm; 7 – water soaked spots 3.1 – 5.0 mm; 9 – water soaked spots > 5.0 mm. The mean disease index (MDI) was calculated (MDI = ∑(n x DI)/N), where n is number of plants; DI is disease index according to the scale; N is the number of all plants. According to MDI, the accessions were divided into five groups: MDI = 1.0 – immune (I), MDI = 1.1 – 3.0 - resistant (R), MDI = 3.1 – 5.0 - middle resistant (MR), MDI = 5.1 – 7.0 - susceptible (S), MDI > 7.0 very susceptible (VS).
Variety Kelvedon Wonder had susceptible reaction of leaves and pods to strains NCPPB 2585 and Bz4 of *P. s. pv. pisi*. Thirteen *Pisum* sp. accessions had a resistant phenotype, 18 accessions had a moderately resistant phenotype and 16 accessions had susceptible phenotype of leaves to strain NCPPB 2585 (Figure 2). Eight accessions had resistant reaction, 18 accessions had moderately resistant reaction and 21 accessions had resistant reaction of pods to the same strain. No accession had an immune or very susceptible reaction of leaves and pods to strain NCPPB 2585. Twenty-five *Pisum* sp. accessions had resistant/moderately resistant reaction of leaves and pods. Among them 6 accessions *P. sativum*, 5 – *Ps. subsp. sativum var. arvense*, 2 – *P. elatius*, 2 – *P. humile*, 1 – *Ps. var. hibernicum*, 4 – *P. abyssinicum*, 3 – *P. transcaucasicum*, 2 – *P. tibetanicum*. The rest accessions had different response of leaves and pods to this strain.

Two *Pisum* sp. accessions had resistant phenotype, 15 accessions had moderately resistant phenotype and 30 accessions had susceptible phenotype of leaves after inoculation with strain Bz4 (Figure 3). One accession had a resistant reaction, 16 accessions had moderately resistant reaction and 30 accessions had susceptible reaction of pods. No accession had an immune or very susceptible reaction of leaves and pods to strain Bz4. Twelve accessions had resistant/moderately resistant reaction of leaves and pods. Among them 2 accessions of the species *P. sativum*, *P. abyssinicum*, *P. transcaucasicum*, *P. tibetanicum* and one accession of the species *P. subsp. sativum var. arvense*, *P. elatius*, *P. humile* and *P. s. var. hibernicum*.

Complex resistance of leaves and pods to both strains of *P.s. pv. pisi* had eleven *Pisum* sp. accessions (Table 1). They had resistant or moderately resistant phenotype of leaves and pods after inoculation with strains NCPPB 2585 and Bz4 of the pathogen. These accessions can be used as a donor parent in a bacterial blight resistant breeding program in pea. In the literature the information about cross ability between different species of genus *Pisum* is limited so that future investigations will give clarity about these possibilities.

Results and discussion

1. Immune (I) 3. Resistant (R) 5. Moderate Resistant (MR) 7. Susceptible (S) 9. Very Susceptible (VS)

Figure 1. Scale for estimation of the reaction of *Pisum* sp. accessions after inoculation of leaves and pods with *Pseudomonas syringae pv. pisi*

Figure 2. Distribution of 47 *Pisum* sp. accessions according to the reaction of leaves and pods to strain NCPPB 2585 of *P. s. pv. pisi*

Figure 3. Distribution of 47 *Pisum* sp. accessions according to the reaction of leaves and pods to strain Bz4 of *P. s. pv. pisi*
Species included in this investigation is race (strain)-specific. This indicates that the resistance in the JI 1556) vary from resistant, moderately resistant to susceptible.

The reaction of leaves and pods of the other accessions (JI 225, JI 2 and Epiphytic life is the main characteristic of the life cycle of leaves and pods to both strains of the pathogen (Table 1). The P. abyssinicum of a (). Schmit et al. (1993) described the resistance glasshouse and field conditions. European Journal of Plant Martin-Sanz et al., 2011) and is governed by dominant genes responses to pea bacterial blight in stems, leaves and pods under specific (). Elvira-Recuenco et al., 2001

specific (). Elvira-Recuenco et al., 2003; Kiryakov and Turkey. Plant Disease, 7, 923. Conclusion

Differences in the reaction of leaves and pods of some Pisum sp. to strain NCPPB 2585 and Bz4 of Pseudomonas syringae pv. pisi have been observed. Twenty-five Pisum sp. accessions had resistant/moderately resistant reaction of leaves and pods to strain NCPPB 2585 and twelve Pisum sp. accessions had resistant/moderately resistant reaction to strain Bz4. Eleven Pisum sp. accessions had resistant or moderately resistant phenotype of leaves and pods after inoculation with both strains of P. pv. pisi. They can be used as a donor parent in a disease resistant breeding program in pea.

References

Kiryakov I and Koleva M, 2014. Resistance in pea cultivars and

Table 1. Reaction of 11 Pisum sp. accessions to strains NCPPB 2585 and Bz4 of P. syringae pv. pisi

<table>
<thead>
<tr>
<th>Accession</th>
<th>Species</th>
<th>Disease response to strain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NCPPB 2585</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leaf</td>
</tr>
<tr>
<td>P648</td>
<td>P. sativum subsp. sativum var. arvense</td>
<td>R</td>
</tr>
<tr>
<td>JI 2201</td>
<td>P. elatus</td>
<td>MR</td>
</tr>
<tr>
<td>JI 241</td>
<td>P. humile</td>
<td>MR</td>
</tr>
<tr>
<td>JI 181</td>
<td>P. sativum</td>
<td>R</td>
</tr>
<tr>
<td>JI 1846</td>
<td>P. sativum var. hibernicum</td>
<td>R</td>
</tr>
<tr>
<td>JI 2385</td>
<td>P. abyssinicum</td>
<td>R</td>
</tr>
<tr>
<td>JI 130</td>
<td>P. abyssinicum</td>
<td>MR</td>
</tr>
<tr>
<td>JI 2547</td>
<td>P. transcaucasicum</td>
<td>MR</td>
</tr>
<tr>
<td>JI 45</td>
<td>P. transcaucasicum</td>
<td>MR</td>
</tr>
<tr>
<td>JI 1428</td>
<td>P. tibeticum</td>
<td>R</td>
</tr>
<tr>
<td>JI 804</td>
<td>P. tibeticum</td>
<td>MR</td>
</tr>
</tbody>
</table>

Sackett WG, 1916. 'A bacterial stem af field and garden peas'. Colorado Agricultural Experiment Station Bulletin 218. (The Experiment Station: Fort Collins, CO);

Review

Effect of feeding program for first two months after birth of female calves on growth, development and first lactation performance
G. Ganchev, E. Yavuz, N. Todorov

Genetics and Breeding

Involvement of the transcriptional variants of histone H3.3 in the development and heat stress response of Arabidopsis thaliana
M. Naydenov*, B. Georgieva, V. Baev, G. Yahubyan

Study of factors affecting sporophytic development of isolated durum wheat microspores
V. Bozhanova, Hlorst Lörz

Screening Pisum sp. accessions for resistance to Pseudomonas syringae pv. pisi
M. Koleva, I. Kiryakov

Investigation on the parthenogenetic response of sunflower lines and hybrids
M. Drumeva, P. Yankov

Hybridization between cultivated sunflower and wild annual species Helianthus petiolaris Nutt.
D. Valkova, G. Georgiev, N. Nenova, V. Encheva, J. Encheva

Nutrition and Physiology

Ethological and haematological indices in yearling sheep fed various dietary nitrogen sources
I. Varlyakov, V. Radev, T. Slavov, R. Mihaylov

Phosphorus fractions in alluvial meadow soil after long-term organic-mineral fertilization
S. Todorova, K. Trendafilov, M. Almaliev

Energy productivity, fertilization rate and profitability of wheat production after various predecessors
I. Energy productivity of wheat
Z. Uhr, E. Vasileva

Influence of mineral nitrogen and organic fertilization on the productivity of grain sorghum
S. Enchev, G. Kikindonov

Production Systems

Influence of the farm construction, farm regimen and season on the comfort indices of dairy cows
D. Dimov, Ch. Miteva, Zh. Gergovska

Effect of the way of pre-sowing soil tillage for wheat on the development of its roots
P. Yankov, M. Drumeva, D. Plamenov
Occurrence of grapevine leafroll-associated virus complex in the Republic of Macedonia
E. Kostadinovska, S. Mitrev, I. Karov

Influence of sowing and fertilization rates on the yield and plant health of einkorn wheat (Triticum Monococcum L.)
V. Maneva, D. Atanasova, T. Nedelcheva, M. Stoyanova, V. Stoyanova

Effect of stocking density on growth intensity and feed conversion of common carp (Cyprinus caprio L.), reared in a superintensive system
S. Stoyanova, Y. Staykov

Agriculture and Environment

Monitoring of fungal diseases of lavender
K. Vasileva

Nitrogen mineralization potential of alluvial meadow soil after long-term fertilization
V. Valcheva, K. Trendafilov, M. Almaliev

Changes in the leaf gas exchange of common winter wheat depending on the date of application of a set of herbicides
Z. Petrova, Z. Zlatev

Leaves area characteristics of Betonica bulgarica Degen et Neić., during vegetation
M. Gerdzhikova*, N. Grozeva*, D. Pavlov*, G. Panayotova*, M. Todorova*

Short communications

Design and development of a device for measuring vacuum-pulsation parameters of milking unit
G. Dineva, V. Vlashev, L. Tsanov
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used.

Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, his first individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Todorov N and Mitev J, 1995: Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IX International Conference on Production Diseases in Farm Animals, September 11–14, Berlin, Germany.

Thesis: Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section "Material and methods".