Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO).

The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editors and Sections
Genetics and Breeding
Atanas Atanasov (Bulgaria) Nikolay Tsenov (Bulgaria) Max Rothschild (USA) Ihsan Soysal (Turkey) Horia Grosu (Romania) Bojin Bojinov (Bulgaria) Stoicho Metodiev (Bulgaria)
Nutrition and Physiology
Nikolai Todorov (Bulgaria) Peter Surai (UK) Zervas Georgios (Greece) Ivan Varlyakov (Bulgaria)
Production Systems
Dimitar Pavlov (Bulgaria) Bogdan Szostak (Poland) Dinko Panaioiotov (Bulgaria) Banko Banev (Bulgaria) Georgy Zhelyazkov (Bulgaria)
Agriculture and Environment
Georgi Petkov (Bulgaria) Ramesh Kanwar (USA) Martin Banov (Bulgaria)
Product Quality and Safety
Marin Kabakchiev (Bulgaria) Stefan Denev (Bulgaria) Vasil Atanasov (Bulgaria)
English Editor
Yanka Ivanova (Bulgaria)
Influence of mineral nitrogen and organic fertilization on the productivity of grain sorghum

S. Enchev*, G. Kikindonov

Agricultural Institute, 9700 Shumen, Bulgaria

Abstract. The production of grain sorghum has increased in recent years. The modern varieties are hybrids with high productivity potential appropriate for application of intensive forage grain production technologies. The increased requirements for ecological production necessitate optimization of the nutrition parameters in the conditions of unstable agriculture with unbalanced soil nutrient substance accumulation. The effect of nutrition with mineral nitrogen fertilizer and organic fertilizer Humustim on the productivity of 6 varieties of Euralis Semences, popular in the practice, was tested during 2011 – 2013. In the various climatic conditions fertilization is a highly effective factor for productivity increase. The use of organic fertilizers such as Humustim widens the possibilities of the ecological production.

Keywords: grain sorghum, technology, nutrition, fertilizer

Introduction

Grain sorghum (Sorghum vulgare Pers.) is a valuable forage crop. Its high nutritive value is combined with good productivity and possibility of many-sided use. Regardless of the excellent qualities of sorghum as grain source, its distribution in our country is still limited, and for 2013 the areas with sorghum are only 4339 ha (MAF, Agrostatistics). The observed climatic changes connected with global warming and drought could lead to substantial decrease of forage production. For this reason forage crops with high productivity and adaptation capabilities to the local conditions are necessary. These preconditions renew the interest in sorghum for the agricultural science and practice (Yakimov and Kikindonov, 2008).

Sorghum is comparatively easygoing to the different soil types because of its powerful root system – the water and nutritive substances intake is easy with such a great absorption capability. Despite the possibility of development on whatever soil type, sorghum shows very high receptivity to organic and mineral fertilization, and especially to nitrogen fertilization. The last is a basic element of the crops growth technologies and a mover of the yields (Ivanov, 2008). Its quantity in soil is one of the basic factors for sorghum's high productivity (IPNI, 2012). The bad availability of nitrogen in soil leads to crop's impossibility to deploy its biological potential (Baker and Blarney, 1985; Coclea et al., 2014). The supply of plants with nutritive substances in most cases leads to yield increase up to 20% on the average stocked up soils, and 40 – 50% on the poor soils. The use of mineral fertilizers in most cases ensures the needs of sorghum plants for macroelements, but the quantity of microelements is usually not enough, and they are in a hardly digestible form. That is why, from a physiological point of view, the application of complex leaf fertilizers is especially effective (Slanev, 2014).

The recent years studies prove the high effect of the humus fertilizers such as Biohumax (Nankova et al., 2004) and Humustim (Petrova and Tanova, 2004; Sengalevich et al., 2004; Hailova and Gergova, 2014). Humustim is an ecologically clean organic product. Its basic active substance is potassium humate with high humine acids content. Except the macroelements K, N and F it contains numerous microelements, and this makes it a preferable fertilizer for ecologically clean production.

The aim of the present research is to study the productivity of grain sorghum in dependence with mineral and organic fertilizer application.

Material and methods

The research was conducted during the period 2011 – 2013 at the experimental fields of the Agricultural Institute, Shumen. The soil type is carbonate black soil with 3.3% humus, very high content of CaCO₃ and slightly alkaline reaction of the soil solution (pH 7.4 – 7.8). The content of the basic nutritive elements is: N – 35.0 – 42.0 mg/kg, P₂O₅ – 4.7 mg/100 g, K₂O – 34.0 mg/100 g, B – 1.2 mg/kg, Mn – 45.0 mg/kg, Zn – 0.1 mg/kg, Mo – 0.1 mg/kg. We could specify the soil as poor in nitrogen, phosphorus and zinc, and rich in K and B.

Object of study were the French grain sorghum varieties Alise, Armida, Mistral, Standart, Solaris and Arkansiel – widely used in the practice. In a comparative test, in three-row plots of 8.4 m² and 70 cm between the rows, the effect of fertilization with 200 kg/ha mineral nitrogen and 500 ml/ha organic fertilizer Humustim (recommended by the manufacturer dose for application in grain crops) on the productivity of the varieties is studied. The organic fertilizer Humustim has 12.5% dry matter, including 41.05% ashes and mineral substances, and 58.95% organic matter. 23.4% of the organic matter is humine acids, 7.83% – total potassium, 3.0% – total nitrogen, 1.14% – total P, 3.92% – total Ca, 1.11% – total magnesium. The content of digestible nitrogen is: NH₄ – 142.8 mg/l and NO₃ – 12.6 mg/l, digestible P₂O₅ – 400 mg/l, digestible K₂O – 10245 mg/l, the pH of the solution is 8–9.

The mineral nitrogen was applied before the basic tillage of the ground, and the leaf treatment with Humustim was done in 4th – 6th leaf phase of the sorghum. The growth of the grain sorghum was carried out according to the confirmed technology following sugar beet, in non-irrigation conditions. The statistically significant differences between the tested variants are determined by application of dispersion analysis (Lidanski, 1988).

* e-mail: stanimir_en@abv.bg
Results and discussion

The years of study 2011 – 2013 differ in rainfall quantity and temperature sum, as well as in their distribution from the sowing to the grain sorghum harvest time (Table 1). The first year of study was comparatively dry regarding the total quantity of vegetation rainfalls – 260 mm compared to the normal (measured for a 50-year period) – 310 mm. Their distribution during the vegetation is irregular, which also characterizes the year as unfavorable for the crop development. The continuous and cool spring forced late sowing (12.05 – 15.05). The insufficient rainfall during the winter period before sowing also led to the low water stock of the experimental field. The stable weather in the autumn of 2011 allowed postponing the harvest to the end of September, which to a great extent compensated the unfavorable climatic factors. The climatic conditions in 2012 were extremely unfavorable. There was a late, cool and continuous spring, followed by the most severe drought for the last decade. The unfavorable spring conditions led to irregularly trimmed seedling, and the following dry period strongly affected the grain productivity of sorghum. In 2013 there was a period of 35 days before and after sowing with no rainfalls. This slowed the sorghum germination. Even if the vegetation rainfall sum did not divert from the norm, their distribution during the vegetation was uneven.

Data of crop yield are the most important and systematic index of the technology. The received results for grain sorghum productivity in 2011 are given in Table 2. The mineral nitrogen fertilization shows positive effect on productivity and increases the grain yield of all tested varieties. The most responsive to nitrogen fertilization is Mistral, realizing a yield of 13.4 t/ha. The treatment with Humustim also affects positively the yield – all six tested varieties exceed the control. It should be noted that the fertilization effect is different for the different genotypes. It is mostly tangible for Mistral, Armida and Alise with the use of mineral nitrogen, and for Mistral and Standard – when Humustim has been applied.

The effectiveness of nitrogen fertilization is determined by a number of factors, the most important of which are the presence of sufficient moisture in the soil profile and the density of sowing. The extremely unfavorable conditions of 2012, with the record spring drought and the irregular sowing affected the grain yield results. For its normal vegetation sorghum needs rainfalls of at least 250 mm, with an optimum of 350 – 400 mm, allowing high yield realization (Blum, 1970). The data of the climatic values in 2012 show that the total vegetation rainfalls are only 167.9 mm. Despite that this crop proves its drought resistance and even in such bad conditions the tested hybrids demonstrated comparatively good productivity. Only the differences in the grain yield index between the separate origins and variants of fertilization decrease in comparison with the previous year. In such unfavorable conditions the treatment of grain sorghum hybrids with mineral nitrogen lead to average yield values of 3.05 t/ha, and the treatment with Humustim – to 2.76 t/ha, which exceeds the yield from the control.

The third year of tests was the most favorable for the grain

Table 1. Precipitations and temperatures during the period April-September in the region of Agricultural Institute, Shumen

<table>
<thead>
<tr>
<th>Years</th>
<th>Month</th>
<th></th>
<th>Rainfalls-mm</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decades</td>
<td>Amount</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>2011</td>
<td>IV</td>
<td>2.4</td>
<td>29.5</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>50</td>
<td>2.2</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>13.8</td>
<td>8.3</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>28.1</td>
<td>-</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>22.5</td>
<td>45.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>-</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total for the period</td>
<td>260.4</td>
</tr>
<tr>
<td>2012</td>
<td>IV</td>
<td>-</td>
<td>4.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>6.0</td>
<td>13.7</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>6.2</td>
<td>-</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>16.8</td>
<td>7.3</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>4.2</td>
<td>6.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>50.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total for the period</td>
<td>167.9</td>
</tr>
<tr>
<td>2013</td>
<td>IV</td>
<td>23.3</td>
<td>10.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>0.5</td>
<td>12.4</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>18.6</td>
<td>30.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>36.4</td>
<td>13.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>-</td>
<td>-</td>
<td>40.1</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>2.5</td>
<td>20.1</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total for the period</td>
<td>215.1</td>
</tr>
</tbody>
</table>

* mean of vegetation rainfalls for 50 years period
Conclusions

The application of the Humustim preparation influences positively the grain yield in the three years of tests. Even in unfavorable climatic conditions the use of mineral and organic nitrogen fertilizers has a positive effect on the productivity of grain sorghum. The effect of fertilization is different for the different grain sorghum genotypes.

References

Baker CM and Blarney FPC, 1985. Nitrogen fertilizer effects on yield and nitrogen uptake of sorghum and soybean, grown in sole cropping and intercropping systems. Field crop research, 12, 223-240.

Haytova D and Gergova A, 2014. Vegetative growth of zucchini and patissions after foliar application with HUMUSTIM. Scientific University of Rousse, 53, 1.1 (Bg).

Yakimov D and Kikindonov Tz, 2008. Evaluation of origins of sorghum in the germination of the seeds under low temperature conditions. Annual of Konstantin Preslavski University, Shumen, XVIII B 3, Faculty of natural sciences, 69-74 (Bg).

http://www.mzh.govarment.bg/MZH/bg/ShortLinks/SelskaPolitika/Agrostatistics.aspx
Review

Effect of feeding program for first two months after birth of female calves on growth, development and first lactation performance
G. Ganchev, E. Yavuz, N. Todorov

Genetics and Breeding

Involvement of the transcriptional variants of histone H3.3 in the development and heat stress response of Arabidopsis thaliana
M. Naydenov*, B. Georgieva, V. Baev, G. Yahubyan

Study of factors affecting sporophytic development of isolated durum wheat microspores
V. Bozhanova, [Horst Lörz]

Screening Pisum sp. accessions for resistance to Pseudomonas syringae pv. pisi
M. Koleva, I. Kiryakov

Investigation on the parthenogenetic response of sunflower lines and hybrids
M. Drumeva, P. Yankov

Hybridization between cultivated sunflower and wild annual species Helianthus petiolaris Nutt.
D. Valkova, G. Georgiev, N. Nenova, V. Encheva, J. Encheva

Nutrition and Physiology

Ethological and haematological indices in yearling sheep fed various dietary nitrogen sources
I. Varlyakov, V. Radev, T. Slavov, R. Mihaylov

Phosphorus fractions in alluvial meadow soil after long-term organic-mineral fertilization
S. Todorova, K. Trendafilov, M. Almaliev

Energy productivity, fertilization rate and profitability of wheat production after various predecessors
I. Energy productivity of wheat
Z. Uhr, E. Vasileva

Influence of mineral nitrogen and organic fertilization on the productivity of grain sorghum
S. Enchev, G. Kikindonov

Production Systems

Influence of the farm construction, farm regimen and season on the comfort indices of dairy cows
D. Dimov, Ch. Miteva, Zh. Gergovska

Effect of the way of pre-sowing soil tillage for wheat on the development of its roots
P. Yankov, M. Drumeva, D. Plamenov
Occurrence of grapevine leafroll-associated virus complex in the Republic of Macedonia
E. Kostadinovska, S. Mitrev, I. Karov

Influence of sowing and fertilization rates on the yield and plant health of einkorn wheat (*Triticum Monococcum* L.)
V. Maneva, D. Atanasova, T. Nedelcheva, M. Stoyanova, V. Stoyanova

Effect of stocking density on growth intensity and feed conversion of common carp (*Cyprinus caprio* L.), reared in a superintensive system
S. Stoyanova, Y. Staykov

Agriculture and Environment

Monitoring of fungal diseases of lavender
K. Vasileva

Nitrogen mineralization potential of alluvial meadow soil after long-term fertilization
V. Valcheva, K. Trendafilov, M. Almaliev

Changes in the leaf gas exchange of common winter wheat depending on the date of application of a set of herbicides
Z. Petrova, Z. Zlatev

Leaves area characteristics of *Betonica bulgarica* Degen et Neič., during vegetation
M. Gerdzhikova *, N. Grozeva *, D. Pavlov *, G. Panayotova *, M. Todorova *

Short communications

Design and development of a device for measuring vacuum-pulsation parameters of milking unit
G. Dineva, V. Vlashev, L. Tsanov
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.