Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence.

They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: EBSCO Publishing, Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
Agriculture and Environment

Monitoring of fungal diseases of lavender

K. Vasileva*

Department of Phytopathology, Faculty of Plant Protection and Agroecology, Agricultural University, 12 Mendeleev, 4000 Plovdiv, Bulgaria

Abstract. In the period between 2013 and 2014, phytosanitary monitoring was performed to establish the health status of lavender in relation to fungal diseases. During 2013, the diseases spread were investigated on 56,973 ha, and during 2014 – on 218,01 ha, respectively. The calculated disease incidence is 20.84% for the first, and 21.64% for the second year. The data analysis indicates that the phytosanitary situation is very complicated. As a whole, the pathogen infestation on the major varieties at different ages and in different regions was between 3.45% and 53.79%. The percentage of infected plants varies by regions: Karlovo (from 34.08 to 35.65%), Stara Zagora (16.04 – 30.27%), Kazanlak (20.01 – 23.43%), Elhovo (32.67 – 35.10%), Shumen (14.79 – 15.79%). Disease incidence on the major variety Seuthopolis, in 1 to 3-year-old lavender plantations differs: in Iganovo village, Karlovo region it was 36.18% and in Khan Krum village, Shumen region – 4.73%. This is an indication for the presence of high infection level in lavender fields from the early stages of plant development. It may be due to the usage of infected planting material or to the establishment of new plantations onto old lavender fields. Isolations have been made from different areas. In 2013, the diseases spread were investigated on 56.973 ha, and during 2014 – on 218.01 ha, respectively. The calculated disease incidence is between 3.45% and 53.79%. The percentage of infected plants varies by regions: in 2013 – 30.27%, in 2014 – 35.65%.

Keywords: lavender, diseases, Phoma, Phomopsis, Septoria, Phytophthora.

Introduction

Lavender (Lavandula officinalis) is mainly grown for the production of high quality essential oil, which is applied in cosmetics, in the perfumery and pharmaceutical industries, but also in medicine (Yankulov, 2000). Main lavender production regions are Stara Zagora and Plovdiv, and less lavender is grown in Pazardzhik, Blagoevgrad, Burgas, Varna, Shumen, Veliko Tarnovo and Vidin areas. In these regions lavender is planted on lands that are less productive and located at 800 to 1,000 m above sea level (Terziev, 2006; Dzhumariski et al., 2009).

The crop is considered as relatively resistant to the pathogenic microflora. In literature reports can be found about occurrence of phytoplasma (wet feet), Alfalfa mosaic virus, Cucumber mosaic virus, bacteriosis (Xanthomonas campestris); fungal diseases – Phomopsis (Phomopsis lavandulae Gabotto), Phoma (Phoma lavandulae), Septoria (Septoria lavandulae Dezm.), gray mold (Botrytis cinerea) and soil inhabiting pathogens from the genera Fusarium, Verticillium, Sclerotium bataticola, Sclerotinia sclerotiorum and Phytophthora.

In the foreign literature, data about damages caused by the fungus Phomopsis lavandulae are reported. Disease developed in epidemic size during the second half of the XX century, when it destroyed completely lavender plantations, 3-4 years old, in France (Buczacki and Harris, 1998). During the last decades the losses in lavender caused by Fusarium fungi are increasing. Pathogens have been reported in China (Ren et al., 2008), Saudi Arabia (Perveen and Bokhari, 2010), and in Croatia (Cosic et al., 2012). Damages from Phomopsis are increased when associated with other pycnidal pathogenic fungi from the genera Septoria and Phoma (Buczacki and Harris, 1998).

Information about the spread of Phytophthora fungi and losses caused are found in the publications of Putnam (1991), Minuto et al. (2001), Tsay (2002), Alvarez et al. (2007), Dervies et al. (2011), Nakova (2011). From diseased plants with symptoms most frequently isolated species of Phytophthora rot, is Phytophthora nicotianae var. parasitica Breda de Haan, syn. Phytophthora parasitica (Putman, 1991; Minuto et al., 1999; Minuto et al., 2001; Alvarez et al., 2007; Nakova, 2011; Faedda et al., 2013). Another species causing damages in lavender is Phytophthora cinnamomi (Orlikowski and Valjuskaite, 2007). In Spain, Phytophthora palmivora has also been reported (Paez et al., 1993). The hybrid Phytophthora x pelgrandis was described in the USA and Taiwan as a pathogen on ornamental plants. In lavender, it is found in the Netherlands (Bonnants et al., 2000), Hungary and Italy (Szijethy et al., 2012; Faeda et al., 2013). The species Phytophthora cryptogea is also reported on lavender and gerbera (Orlikowski, 1981; Orlikowski and Valjuskaite, 2007; Krober, 1991). In Italy, Septoria lavandulae was isolated from L. dentate (Buonario et al., 1996). This species is identified in Hungary on L. angustifolia, in 2010 (Nagy and Horvath, 2010) and in Croatia (Vrandecic et al., 2014). In France, the same symptoms of the disease are described (Boudier, 1995).

In Bulgarian phytopathological literature reports have been published about Septoria lavandulae, Phoma lavandulae, root rot and withering of lavender (Hristov, 1972, Margina, 2000; Bobev, 2009; Nakova, 2011). The roots are dead and black branching rhizomorphs can be found – Armariella mellea, or white powdery mycelia and flat branched rhizomorphs - Rosellinia necaritix (Hristov, 1972, Margit, 2000). Phomopsis causes drying of the separate branches or whole plants. The stems become yellow, necrotic and filled with black picknidia (Bobev, 2009). In 2008 – 2009 Nakova (2011) identified Phomopsis lavandulae (Gabotto) as the causal agent of the disease. The plants carrying infection of the...
 Phytophthora spp. in the early stages have stunted growth, followed by a yellowing of the leaves and then wilting and defoliation (Nakova, 2011).

The aim of this study was to perform phytosanitary monitoring of the fungal diseases in lavender, calculate the percentage of diseased plants and diseases spread and severity, and determine the biodiversity of pathogens.

Material and methods

During the period 2013–2014, the diseases spread were determined in lavender plantations located in the main production areas of the Southern, Central and Northern part of Bulgaria. The laboratory analyses are carried out at the Department of Phytopathology, Agricultural University, Plovdiv.

Spread of the diseases

Incidence rate was calculated as a percentage of the infected leaves and skeletal branches, to total leaves and branches inspected. Tests were done walking on diagonals onto randomly selected shrubs of lavender fields. The calculations are performed according to the formula of Chumakov (1974):

\[P = \frac{a}{A} \times 100 \]

where \(P \) is Incidence of diseases (%), \(a \) is Number of diseased plants, \(A \) is total number of reported plants.

Disease severity

The index of disease severity is calculated by the formula of McKinney (Josifovich, 1956):

\[I = \sum \left(n \times k \right) / N \times K \times 100 \]

where \(I \) is Index of the disease (%), \(n \) is Number of samples (leaves/branches) reported, at the respective scores/group, \(k \) is Group scores, \(N \) is total number of recorded samples (leaves/branches), \(K \) is the highest, score evaluated in field.

The score is determined by counting the number of spots on the internodes of the skeletal branches of 50 plants of each variety/age using a five-point scale. To measure the spread of the spots on the leaves, 100 leaves of variety/age are examined using a six-point scale.

Disease severity on the branches is determined according to the following scale:

0 – healthy skeletal branches;
1 – skeletal branches with 1-2 spots at internode;
2 – skeletal branches with 3-5 spots at internode;
3 – skeletal branches with 6-10 spots at internode;
4 – skeletal branches with more than 10 spots at internode.

The degree of attack on the leaves is determined according to the following scale:

0 – no signs of disease;
0.1 – small (about 1mm) spots;
1 – spots on 25% of the leaf area;
2 – spots on 50% of the leaf area;
3 – spots on 75% of the leaf area;
4 – spots on more than ≥75% of the leaf area.

Identification of the phytopathogens that cause the diseases is performed macroscopically based on symptoms (syndrome) characteristics, and microscopically by morphological characters of the fruiting bodies and spores (Taftradjiski et al., 1973).

Isolation of the pathogens

Small pieces of infected tissues are cut from the border zone between the diseased and healthy part and then washed with running water. Isolations are made on PDA. From pure cultures, sporulation is examined and pathogenicity tests are carried by inoculation of healthy branches of healthy lavender plants.

Pathogenicity tests

From 12–14 days’ culture on PDA, a spore suspension of Phoma and Phomopsis is prepared and sprayed on skeletal branches of lavender. For isolates of Phytophthora, mycelial block is placed at the base of the branches. Control plants are sprayed with distilled water. Plants are placed in a growth chamber at 25°C, RH 70% and periodically sprayed with water to maintain high humidity. If symptoms appear, reisolation and microscopic analysis are carried out.

From lavender inoculated plants with pathogens of the genus Phytophthora, isolations on selective media PARP have been done after appearance of symptoms, and also the method of “baiting bioassay” is performed (Erwin and Ribeiro, 1996).

Results and discussion

In the foreign literature, data about percentage of losses are reported. In Tella region (Italy) in 2001, about 60% of the plants grown on loam soil exhibit symptoms of wilt and root rot (Dervies et al., 2011). During 2004, in Valencia, lavender plants are affected by stem and root rot. Infected plants are about 70% and have shown symptoms of wilting and lack of growth (Alvarez et al., 2007). During the period 2004–2005 in China, wilting has been observed resulting in high loss in yield, 15–20% (Ren et al., 2008). In 2010 in Turkey, symptoms of root rot were observed in 45% of the plants in the nursery (Dervies et al., 2011). During 2011 in plantations in the region of Slavonia, Croatia, symptoms of wilting have been observed on 20–30% of lavender plants (Cosic et al., 2012). In most cases the authors reported only the species which attack the lavender plants but not the percentage of losses.

The lack of current information about the health status of lavender crops in Bulgaria necessitates the conduction of phytosanitary monitoring in the main lavender producing areas of the country – Karlovo, Stara Zagora, Kazanlak, Elhovo, Shumen and others.

The study was performed in the period 2013 and 2014.

Percentage of infected plants was calculated and also the spread of the fungal phytopathogens. The total investigated area in 2013 was 57.963 ha, and the average percentage of diseased plants was 20.84%. In 2014, the investigated area was 218.01 ha, and the average percentage of diseased plants was 21.64%. Analysis of the data (Tables 1 and 2) shows that in some regions the spread of fungal diseases varies between different age groups: Karlovo from 6.47% to 46.91%, Plovdiv (35.85%–63.88%), Asenovgrad (5.15%–42.61%), Kazanlak (6.83%–47.76%), Stara Zagora (2.68%–45.12%), Shumen (4.73%–14.79%). In 2013, the highest percentage of diseases is observed in the region of Karlovo, village Iganovo on the one-year-old lavender – 48.95% and on 2–3-year-old...
Table 1. Spread of lavender fungal diseases in some regions of Bulgaria in 2013

<table>
<thead>
<tr>
<th>Region</th>
<th>Variety</th>
<th>Age of plantation, years</th>
<th>Area, ha</th>
<th>% of diseased plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burgas -Elhovo</td>
<td>Seuthopolis</td>
<td>8 - 9</td>
<td>1.5</td>
<td>32.67</td>
</tr>
<tr>
<td>Yambol-Zornitsa</td>
<td>Seuthopolis</td>
<td>1</td>
<td>3</td>
<td>20.27</td>
</tr>
<tr>
<td>Zornitsa</td>
<td>Seuthopolis</td>
<td>2 - 3</td>
<td>9</td>
<td>13.04</td>
</tr>
<tr>
<td>Zornitsa</td>
<td>Druja</td>
<td>10</td>
<td>17</td>
<td>34.8</td>
</tr>
<tr>
<td>Zimnitsa</td>
<td>Seuthopolis</td>
<td>nursery</td>
<td>0.05</td>
<td>10.49</td>
</tr>
<tr>
<td>Plovdiv</td>
<td>Seuthopolis</td>
<td>4 - 5</td>
<td>0.006</td>
<td>10.45</td>
</tr>
<tr>
<td>Plovdiv</td>
<td>Raya</td>
<td>2 - 3</td>
<td>0.0042</td>
<td>4.35</td>
</tr>
<tr>
<td>Plovdiv</td>
<td>Hebar</td>
<td>2 - 3</td>
<td>0.0042</td>
<td>3.03</td>
</tr>
<tr>
<td>Plovdiv</td>
<td>Yubileyna</td>
<td>2 - 3</td>
<td>0.0042</td>
<td>3.45</td>
</tr>
<tr>
<td>Plovdiv</td>
<td>Druja</td>
<td>2 - 3</td>
<td>0.0042</td>
<td>12.5</td>
</tr>
<tr>
<td>Karlovo-Iganovo</td>
<td>Seuthopolis</td>
<td>1</td>
<td>0.8</td>
<td>48.95</td>
</tr>
<tr>
<td>Iganovo</td>
<td>Seuthopolis</td>
<td>3</td>
<td>1</td>
<td>26.25</td>
</tr>
<tr>
<td>Iganovo</td>
<td>Seuthopolis</td>
<td>4 - 5</td>
<td>1.5</td>
<td>25.64</td>
</tr>
<tr>
<td>Karnare</td>
<td>Seuthopolis</td>
<td>5 - 6</td>
<td>2.5</td>
<td>28.49</td>
</tr>
<tr>
<td>Rozino</td>
<td>Seuthopolis</td>
<td>2 - 3</td>
<td>5</td>
<td>41.06</td>
</tr>
<tr>
<td>Kazanlak-Manolovo</td>
<td>Seuthopolis</td>
<td>3 - 4</td>
<td>7.5</td>
<td>27.53</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>nursery</td>
<td>0.6</td>
<td>16.48</td>
</tr>
</tbody>
</table>

The data reveal that there is a high infection level in the lavender censos, that is a factor for increased development of fungal diseases in the fields. Under favorable weather conditions pathogens can provoke an outbreak of epidemics. Plant health status was also complicated because of the association of fungal phytopathogens from different genera that parasitize lavender stems, roots, branches and leaves, leading to deep disorders in the growth and development of plants. The survey indicates complicated phytosanitary situation in young plantations aged from 1 to 3-4 years old. For example, in the village of Panicherevo in one-year-old plantations the diseases recorded on variety Hemus are 11.86% and in the village of Khan Krum – 4.73% (Seuthopolis variety). In 2-year-old plantations infestation is 36.18% in the Iganovo village (Seuthopolis), 3.73% in the village of Manolovo (Seuthopolis), 11.35% in Asenovgrad (Seuthopolis). In 3-4-year-old plantations, disease incidence is 45.19% in the village of Iganovo (Seuthopolis), 63.88% in the village of Dolna mahala, 35.55% in Manolovo, 46.91% in the village of Rozino.

The most widely grown variety in the country – Seuthopolis, is strongly attacked by phytopathogens, and the highest rate of disease incidence in 2013 was reported on one-year-old plants in the region of Iganovo 48.95%, while the lowest is in a 3-year-old plantation in the village of Zimnitsa – 1.60%. In 2014 the percentage of diseases is 63.88% – in 3-year-old plantations in the region of Dolna mahala. There are fields from that variety where the percentage of diseased plants is low – for example, 2-year-old lavender in the region of Manolovo (3.73%). In variety Hebar, 18-year-old plantation (Panicherevo), the percentage is 45.12%, and on variety Hemus (Panicherevo – 1-year-old lavender) – 11.86% are recorded.

The data received indicate the wide variation of the symptoms and the severity index on the leaves, skeletal branches and base of the plants (Figure 1). There is a trend of discovering more damages on the wood in the old plantations. But there are also cases registered with high index of diseases development on the leaves and wood in new fields aged 2-4 years, like Iganovo (Karlov) where disease severity is respectively 15.83% and 33.5%, Pavel Banya – 8.40% and 24.08%; Tarnichene – 21.0% and 35.0%; Manolovo – 3.6% and 30%. The analysis also point out that the main cultivated varieties in Bulgaria are sensitive to fungal pathogens. Diseases spread and severity in the different groups varies over a wide range on the leaves and the wood of the skeletal branches.

The macroscopic and microscopic diagnostics shows that plant health status of lavender is complicated. In the area of the town Elhovo, disease symptoms and sporulations (fruiting bodies and spores) are found from fungi of the genera: Phomopsis, Septoria, Phytophthora and Fusarium; in the region of Stara Zagora (Zimnica, Panicherevo) – Phoma, Phytophthora, Fusarium, Alternaria and Verticillium; near the town of Kazanlak (Kazanlak, Pavel banya, Tarnichene, Manolovo) – Phomopsis, Phoma, Septoria, Phytophthora, Fusarium, Verticillium and Alternaria; near the town of Karlovo (Iganovo, Karnare, Rozino, Vedrare) - Phoma, Phomopsis, Phytophthora, Alternaria, Verticillium; near the town of Plovdiv (Dolina Mahala, Asenovgrad, Novi izvor) – Fusarium, Alternaria, Phytophthora, Phomopsis, Phoma, Septoria. The town of Shumen (Khan Krum, Nikola Kozlevo) – Phytophthora, Phomopsis, Phoma. Infection levels, with more than 20% infested plants were reported in Karlovo, Yambol and Burgas in lavender field aged from 1 to 2 or 3 years old.

A prerequisite for the complex syndrome is the ability of pathogens to associate and parasite in various plant organs. In support of that are the results of the microscopic analysis and isolations of pathogens from diseased plants from different regions of the country (Table 3). In the second half of the vegetation of the culture, with the increase of temperature, the percentage of diseased plants is also rising. The reason for this is that during the...
Table 2. Spread of lavender fungal diseases in some regions of Bulgaria in 2014

<table>
<thead>
<tr>
<th>Region</th>
<th>Variety</th>
<th>Age of plantation, years</th>
<th>Area, ha</th>
<th>% of diseased plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iganovo</td>
<td>Seuthopolis</td>
<td>2</td>
<td>0.8</td>
<td>36.18</td>
</tr>
<tr>
<td>Karnare</td>
<td>Seuthopolis</td>
<td>6-7</td>
<td>2.5</td>
<td>41.54</td>
</tr>
<tr>
<td>Rozino</td>
<td>Seuthopolis</td>
<td>3-4</td>
<td>5</td>
<td>46.91</td>
</tr>
<tr>
<td>Iganovo</td>
<td>Seuthopolis</td>
<td>4</td>
<td>1</td>
<td>45.19</td>
</tr>
<tr>
<td>Iganovo</td>
<td>Seuthopolis</td>
<td>5-6</td>
<td>1.5</td>
<td>37.67</td>
</tr>
<tr>
<td>Vedrare</td>
<td>Seuthopolis</td>
<td>7-8</td>
<td>3</td>
<td>6.42</td>
</tr>
<tr>
<td>Pavel banya</td>
<td>Seuthopolis</td>
<td>4</td>
<td>0.8</td>
<td>7.12</td>
</tr>
<tr>
<td>Tarnichene</td>
<td>Seuthopolis</td>
<td>4-5</td>
<td>6.7</td>
<td>4.14</td>
</tr>
<tr>
<td>Tarnichene</td>
<td>Seuthopolis</td>
<td>3-4</td>
<td>13</td>
<td>15.45</td>
</tr>
<tr>
<td>Tarnichene</td>
<td>Seuthopolis</td>
<td>4-5</td>
<td>7.5</td>
<td>24.84</td>
</tr>
<tr>
<td>Tarnichene</td>
<td>Seuthopolis</td>
<td>8</td>
<td>2.5</td>
<td>12.15</td>
</tr>
<tr>
<td>Tarnichene</td>
<td>Seuthopolis</td>
<td>5-6</td>
<td>4</td>
<td>23.37</td>
</tr>
<tr>
<td>Tarnichene</td>
<td>Seuthopolis</td>
<td>3-4</td>
<td>5.5</td>
<td>13.66</td>
</tr>
<tr>
<td>Manolovo</td>
<td>Seuthopolis</td>
<td>4-5</td>
<td>15</td>
<td>15.67</td>
</tr>
<tr>
<td>Manolovo</td>
<td>Seuthopolis</td>
<td>3-4</td>
<td>20</td>
<td>10.91</td>
</tr>
<tr>
<td>Manolovo</td>
<td>Seuthopolis</td>
<td>4-6</td>
<td>15</td>
<td>12.22</td>
</tr>
<tr>
<td>Manolovo</td>
<td>Seuthopolis</td>
<td>2</td>
<td>2</td>
<td>3.73</td>
</tr>
<tr>
<td>Panicherevo</td>
<td>Hebar</td>
<td>18</td>
<td>10</td>
<td>45.12</td>
</tr>
<tr>
<td>Panicherevo</td>
<td>Seuthopolis</td>
<td>2</td>
<td>11</td>
<td>33.83</td>
</tr>
<tr>
<td>Panicherevo</td>
<td>Hemus</td>
<td>1</td>
<td>22</td>
<td>11.86</td>
</tr>
<tr>
<td>Dolna mahala</td>
<td>Seuthopolis</td>
<td>3</td>
<td>7</td>
<td>63.88</td>
</tr>
<tr>
<td>Dolna mahala</td>
<td>Seuthopolis</td>
<td>4</td>
<td>2</td>
<td>35.85</td>
</tr>
<tr>
<td>Dolna mahala</td>
<td>Seuthopolis</td>
<td>4</td>
<td>1</td>
<td>49.83</td>
</tr>
<tr>
<td>Asenovgrad</td>
<td>Seuthopolis</td>
<td>8</td>
<td>5</td>
<td>42.61</td>
</tr>
<tr>
<td>Asenovgrad</td>
<td>Seuthopolis</td>
<td>4</td>
<td>15</td>
<td>5.55</td>
</tr>
<tr>
<td>Khan Krum</td>
<td>Seuthopolis</td>
<td>1</td>
<td>2.2</td>
<td>4.73</td>
</tr>
<tr>
<td>Nikola Kozlevo</td>
<td>Seuthopolis</td>
<td>3</td>
<td>3</td>
<td>14.79</td>
</tr>
<tr>
<td>Novi Izvor</td>
<td>Seuthopolis</td>
<td>2</td>
<td>0.4</td>
<td>11.35</td>
</tr>
<tr>
<td>Kazanluk</td>
<td>Seuthopolis</td>
<td>4-5</td>
<td>0.5</td>
<td>16.26</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>3-4</td>
<td>2.6</td>
<td>6.06</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>3-4</td>
<td>0.67</td>
<td>9.73</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>3-4</td>
<td>0.65</td>
<td>7.93</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>5-6</td>
<td>0.85</td>
<td>15.3</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>2</td>
<td>0.6</td>
<td>7.33</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>3-4</td>
<td>0.61</td>
<td>53.79</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>3-4</td>
<td>0.66</td>
<td>31.99</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>7-8</td>
<td>4.88</td>
<td>6.83</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>8-9</td>
<td>8.3</td>
<td>47.76</td>
</tr>
<tr>
<td>Kazanlak</td>
<td>Seuthopolis</td>
<td>7-8</td>
<td>3.06</td>
<td>9.74</td>
</tr>
<tr>
<td>Manolovo</td>
<td>Seuthopolis</td>
<td>2</td>
<td>3.08</td>
<td>2.68</td>
</tr>
<tr>
<td>Manolovo</td>
<td>Seuthopolis</td>
<td>15</td>
<td>1.77</td>
<td>7.14</td>
</tr>
<tr>
<td>Manolovo</td>
<td>Seuthopolis</td>
<td>8-9</td>
<td>2.6</td>
<td>11.73</td>
</tr>
<tr>
<td>Manolovo</td>
<td>Seuthopolis</td>
<td>7-8</td>
<td>2.78</td>
<td>19.5</td>
</tr>
<tr>
<td>Elhovo</td>
<td>Seuthopolis</td>
<td>8 - 9</td>
<td>1.5</td>
<td>35</td>
</tr>
</tbody>
</table>
Figure 1. Disease severity on plants leaves and skeletal branches
period from July to September diseases caused by *Phoma lavandulae* and *Phomopsis lavandulae* are massively developing. During the warmer months, from July to August, peak moments occur for their development.

The severe attack of *Septoria lavandulae* causes leaf fall and weakening of the plants. In literature there are incidents of yield drops of the row material up to 24% and up to 13% of the fatness, as well as deterioration of the essential oil quality (Margina, 2000). The disease is also dangerous for the seedling production, reducing the percentage of rooting.

Over the past few years, root rot and wilting of plant also appears to be a serious problem in our country, especially in seedling production. *Phytophthora* rot is considered a major problem for some regions of the world where lavender is grown. The prerequisite for the massive spread of *Phytophthora* fungi are some biological characteristics of the pathogens, such as: the availability of a latent infection, in the culture media and plant tissue, general ecological plasticity and variability, high level of adaptation to the conditions of the environment, the presence of parasitic and saprophytic way of life, diversity of reproduction forms, and the presence of polycycle (Hansen et al., 1979, 1980).

When comparing the results with other authors, it is revealed that the percentage of diseased plants is high. This is the consequence of the inadequate care for crops during the growing season and the conditions stimulating the development of pathogens.

Data indicate that in addition to pathogens of the genera *Septoria*, *Phoma*, *Phomopsis* and *Phytophthora* and weaker parasitic fungi from the genera *Alternaria*, *Fusarium*, *Verticillium* are developed, that make the diagnosis of disease complicated and also take decisions control.

Conclusion

The spread of phytopathogens on lavender in different regions of the country varies among different age groups from 3.24% to 53.29%. When the plants grow old the percentage of damage is increasing. The crop is vulnerable to attack by pathogens due to poor growing conditions that lead to deterioration of the quality and quantity of the production. A total of 156 isolates are made and identified from different regions of the country. The presence of the phytopathogens from the genera *Septoria* (S. lavandulae), *Phoma* (P. lavandulae), *Phomopsis* (Ph. lavandulae), *Phytophthora* hybrid, *Phytophthora parasitica* have been confirmed. The spread of the diseases can be reduced by using healthy planting material, removing diseased and wilting lavender bushes, and applying good agricultural practices.

References

<table>
<thead>
<tr>
<th>Isolate №</th>
<th>Region</th>
<th>Cultivar (variety)</th>
<th>Age of plantation</th>
<th>Isolated from:</th>
<th>Type of pathogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leaves</td>
<td>Branches</td>
</tr>
<tr>
<td>E2/31</td>
<td>Elhovo</td>
<td>Southopolis</td>
<td>8-9</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>E2/37</td>
<td>Elhovo</td>
<td>Southopolis</td>
<td>8-9</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Sh0/1</td>
<td>Shumen</td>
<td>Southopolis</td>
<td>10</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Sh1/1.6</td>
<td>Plovdiv</td>
<td>Southopolis</td>
<td>10</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Plovdiv</td>
<td>Southopolis</td>
<td>3</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>19</td>
<td>Plovdiv</td>
<td>Southopolis</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Kazanl</td>
<td>Southopolis</td>
<td>3-4</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>Kazanl</td>
<td>Southopolis</td>
<td>4-5</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2.1</td>
<td>Kazanl</td>
<td>Southopolis</td>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Kazanl</td>
<td>Southopolis</td>
<td>4</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>Kazanl</td>
<td>Southopolis</td>
<td>6-7</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kazanl</td>
<td>Southopolis</td>
<td>7-8</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>28</td>
<td>Plovdiv</td>
<td>Southopolis</td>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Kazanl</td>
<td>Southopolis</td>
<td>4-5</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>22</td>
<td>Plovdiv</td>
<td>Southopolis</td>
<td>4</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>41</td>
<td>Kazanl</td>
<td>Southopolis</td>
<td>15</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Zim3/1</td>
<td>Stara Z</td>
<td>Southopolis</td>
<td>nursery</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>E1/1</td>
<td>Elhovo</td>
<td>Southopolis</td>
<td>8-9</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kazanl</td>
<td>Southopolis</td>
<td>2</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Derived groups of isolates of fungal pathogens from different regions of Bulgaria
shab disease, Lavender shab disease, Bio Images.
investigations. Kolos, Moskow (Ru).
lavrnder wilt caused by Fusarium sporotrichoides in Croatia.
Plant Disease, 96, 591.

Report of a Root Rot Caused by Phytophthora palmivora on
Lavandula angustifolia in Turkey. Plant Disease, 95, 1035.

and development of the raw material base of aromatic and medicinal

APS Press, St. Paul, Minnesota, USA.

Faeda R, Cacciola O, Pane A, Szigethy A, Baconyi J, Velt W,
Martini P, Schena L and San Lio G, 2013. Phytophthora x
pelgrandis causing root and collar rot of Lavandula stoechas in Italy.
Plant Disease, 97, 1091-1096.

and pathogenicity of Phytophthora spp. On Douglas firs seedling
planted on forest sites. Phytopathology, 70, 422-425.

and management of Phytophthora in forest tree nurseries in the
Pacific Northwest. Plant Disease, 63, 607-611.

House of Agricultural literature, Sofia, 86, 355, 417, 429, 459.

Pflanzenschutsdienst, 23, 74-77.

Margina A, 2000. Diseases in Essential Oil and Medicinal Plants Ed.
"Forum", Stara Zagora, 5-7.

nicotianae var. parasitica new parasite of pot grown lavender in
Northern Italy. Colture Protette, 28, 43-45.

observations on susceptibility of Lavendula spp. to Phytophthora

Nagy G and Horvath A, 2010. Septoria leaf spot on medicinal plants

Agricultural Sciences, 6-10.

Orlikowski L, 1980/1981. Studies on the biological control of
Phytophthora cryptogea Pethybr. Et Laff. The mycoflora associated
with gerbera production in Polish greenhouses and effects of its
main components on the development of the pathogen. Protection

Orlikowski L and Valjuskaite A, 2007. New record of
Phytophthora palmivora in Russia. Plant Disease, 97, 152.

Putnam M, 1991. Root rot of lavender caused by Phytophthora
nicotianae. Plant pathology, 480-482.

caused by Fusarium solani in China. Plant Pathology, 57, 377.

Stochevska R, Cacciola O, Pane A, Szigethy A, Baconyi J, Velt W,
Martini P, Schena L and San Lio G, 2013. Phytophthora x
pelgrandis causing root and collar rot of Lavandula stoechas in Italy.
Plant Disease, 97, 1091-1096.

practical exercises on phytopathology. Ed Hristo G. Danov, Plovdiv
(Bg).

Terziev G, Yankov B, Yancheva H, Ivanova R, Yanchev I,
Dimitrov I, Georgieva T and Kolev T, 2006. Crop production - First
Edition. Academic publisher of Plovdiv Agricultural University, 280-
289.

Tsai Y, 2002. Root rot of lavender caused by Phytophthora
parasitica in Taiwan. Plant Pathology, 32, 229-232.

Vrandecic K, Čosić J, Jurković D, Stanković I, Vučurović A,
Krstić B and Bulajić A, 2014. First Report of Septoria Leaf Spot of
Lavandin Caused by Septoria lavandulae in Croatia. Plant Disease,
98, 282-282.

Yankulov J, 2000. The main aromatic plants. 19 Modern
Review

Effect of feeding program for first two months after birth of female calves on growth, development and first lactation performance
G. Ganchev, E. Yavuz, N. Todorov

Genetics and Breeding

Involvement of the transcriptional variants of histone H3.3 in the development and heat stress response of Arabidopsis thaliana
M. Naydenov*, B. Georgieva, V. Baev, G. Yahubyan

Study of factors affecting sporophytic development of isolated durum wheat microspores
V. Bozhanova, Hlorst Lörz

Screening Pisum sp. accessions for resistance to Pseudomonas syringae pv. pisi
M. Koleva, I. Kiryakov

Investigation on the parthenogenetic response of sunflower lines and hybrids
M. Drumeva, P. Yankov

Hybridization between cultivated sunflower and wild annual species Helianthus petiolaris Nutt.
D. Valkova, G. Georgiev, N. Nenova, V. Encheva, J. Encheva

Nutrition and Physiology

Ethological and haematological indices in yearling sheep fed various dietary nitrogen sources
I. Varlyakov, V. Radev, T. Slavov, R. Mihaylov

Phosphorus fractions in alluvial meadow soil after long-term organic-mineral fertilization
S. Todorova, K. Trendafilov, M. Almaliev

Energy productivity, fertilization rate and profitability of wheat production after various predecessors
I. Energy productivity of wheat
Z. Uhr, E. Vasileva

Influence of mineral nitrogen and organic fertilization on the productivity of grain sorghum
S. Enchev, G. Kikindonov

Production Systems

Influence of the farm construction, farm regimen and season on the comfort indices of dairy cows
D. Dimov, Ch. Miteva, Zh. Gergovska

Effect of the way of pre-sowing soil tillage for wheat on the development of its roots
P. Yankov, M. Drumeva, D. Plamenov
Occurrence of grapevine leafroll-associated virus complex in the Republic of Macedonia
E. Kostadinovska, S. Mitrev, I. Karov

Influence of sowing and fertilization rates on the yield and plant health of einkorn wheat (Triticum Monococcum L.)
V. Maneva, D. Atanasova, T. Nedelcheva, M. Stoyanova, V. Stoyanova

Effect of stocking density on growth intensity and feed conversion of common carp (Cyprinus caprio L.), reared in a superintensive system
S. Stoyanova, Y. Staykov

Agriculture and Environment

Monitoring of fungal diseases of lavender
K. Vasileva

Nitrogen mineralization potential of alluvial meadow soil after long-term fertilization
V. Valcheva, K. Trendafilov, M. Almaliev

Changes in the leaf gas exchange of common winter wheat depending on the date of application of a set of herbicides
Z. Petrova, Z. Zlatev

Leaves area characteristics of Betonica bulgarica Degen et Neič., during vegetation
M. Gerdzhikova*, N. Grozeva*, D. Pavlov*, G. Panayotova*, M. Todorova*

Short communications

Design and development of a device for measuring vacuum-pulsation parameters of milking unit
G. Dineva, V. Vlashev, L. Tsanov
Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Бg, Russian = Рu, Serbian = Sr, if in the Cyrillic, Mongolian = Мo, Greek = Гр, Georgian = Геор., Japanese = Яа, Chinese = Чч, Arabic = Аr, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Todorov N and Mitev J. 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IX International Conference on Production Diseases in Farm Animals, September 11–14, Berlin, Germany.

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section "Material and methods".