Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence.

They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines.

The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial Office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student’s campus, 6000 Stara Zagora Bulgaria
Telephone: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu
Investigation on some biotic factors in carp fish ponds

D. Terziyski*, H. Kalcheva*, A. Ivanova1, R. Kalchev²

1Institute of Fisheries and Aquaculture, 248 Vasil Levski, 4003 Plovdiv, Bulgaria
2Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin, 1113 Sofia, Bulgaria

(Manuscript received 8 November 2015; accepted for publication 26 January 2016)

Abstract. Three years studies (2004 – 2006) on the main biotic parameters (chlorophyll-a, phytoplankton biomass, zooplankton biomass and bacterioplankton biomass) in carp fish ponds were carried out. The aim of the study was to investigate the biotic factors and the effect of manuring on the fish ponds. The relative changes in these factors in case of fertilization with manure 3000 kg.ha⁻¹ or without fertilization were determined. The impact of fertilization as bottom-up melioration on some biotic factors was proven by means of paired non-parametric Wilcoxon test with following significant differences: higher levels of chlorophyll-a and higher phytoplankton biomass in fertilized ponds. Zooplankton biomass was higher in fertilized ponds, but the differences were statistically insignificant. Bacterioplankton biomass was higher in the fertilized ponds, which is an indication that the applied melioration does not lead to overfood of organic matter in the ponds.

Keywords: carp fish ponds, manure, phytoplankton biomass, chlorophyll-a, bacterioplankton biomass, zooplankton biomass

Introduction

Biotic factors play a very important role in the production processes in fish ponds, which determines the attention that they need to be studied in fish farms. It is necessary to find the most reliable pathways to regulate the production by autotrophs and purposeful formation of the desired biological regime in the fish pond. Proper interpretation of biotic parameters and the factors that define them are extremely important preconditions for forecasting and rational search of ways to increase the productivity of the fish ponds, their management and finally for regulation of fish production (Bouillon, 1983). Anumber of studies have been devoted to the study of abiotic and biotic factors in fish ponds, some of them are related to complex influence of factors and disclosure of their complicated relationships each other (Duarte and Agusti, 1998; Kaggwa et al., 2009; Bhatnagar and Singh, 2010; Paria et al., 2011). For some factors, such the role of zooplankton in the processes of transformation of nutrients and energy from producers to consumers, studies are limited, but regarding the fish ponds are several (Carney, 1990; Pechar et al., 2002; Potužák et al., 2007).

Nowadays in hydrobiological research chlorophyll content is used as an indicator by which the biomass and the production of phytoplankton are determined. The dependence between chlorophyll-a and primary productivity and the increase of the level of the green pigment was studied in fertilized fish ponds (Abbás, 2000; Tabinda and Ayub, 2010). Positive relationships between chlorophyll a and bacterial abundance and biomass were also found (Simon et al., 1992). In traditional fish ponds, phytoplankton is the most important source of energy for fixing and its addition later in the food chain (Mistleå et al., 2003).

The use of organic manure in fish farming is based on the assumption that the manure is utilized through two pathways (Pekár and Olah, 1998). The manure organic matter provides dissolved and particulate substrates for bacteria and the bacterial laden particles provide food to the filter-feeding and detritus-consuming animals, while the mineralized fraction of the manure stimulates phytoplankton productivity similarly to the action of inorganic fertilizers. Bacterial biomass forms an important link between the various trophic levels in a pond ecosystem. Increasing the destruction of organic matter twice by microorganisms determines the increase in the phytoplankton production by 20% (Shtur, 2006).

The aim of the study was to investigate the biotic factors and the effect of manuring on the fish ponds. In this context basic biotic factors have been studied in manured and control ponds.

Material and methods

The Institute of Fishery and Aquaculture, Plovdiv is located in the western part of the Upper Thracian valley, Bulgaria. The region is characterized by a transitional-continental climate. The study is carried out in the experimental base in Plovdiv during three consecutive years (2004, 2005 and 2006). The ponds are supplied with water from Maritsa River by means of “Eni-Ark” irrigation canal. Seven earthen ponds are involved in the experiment, which individual areas vary between 1.8 and 3.9 da (1ha=10 da). According to Zhang et al. (1987) ponds of this area are among the most productive and easy for management. Their bottom is silt but the periphery and the shallowest parts of some of them have a strip of 1 – 2 m width with increased content of sand. The area of ponds, their shallowness, vertical and horizontal homogeneity are part of the preconditions for choosing them for model objects.

About 3000 kg.ha⁻¹ mineralized manure once in April each year was applied to ponds No 6, 12 and 17. Additionally to the natural food grain forage was given to fishes according to a scheme related to their seasonal growth rate. The periodical examination did not reveal any fish diseases.

The applied polyculture technology includes mixed breeding of 30 individuals da⁻¹ one-year old bighead carp (Aristichthys notatus).
Table 1. Scheme of the experiments in years 2004, 2005 and 2006

<table>
<thead>
<tr>
<th>Year</th>
<th>Variants of breeding</th>
<th>Pond No. area (da)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fertilized ponds, numb.da⁻¹</td>
<td>Control ponds, numb.da⁻¹</td>
</tr>
<tr>
<td>2004</td>
<td>6 (3.8)</td>
<td>17 (2.6)</td>
</tr>
<tr>
<td></td>
<td>8 (3.8)</td>
<td>15 (3.1)</td>
</tr>
<tr>
<td></td>
<td>16 (2.6)</td>
<td>18 (1.8)</td>
</tr>
<tr>
<td>2005</td>
<td>12 (3.9)</td>
<td>17 (2.6)</td>
</tr>
<tr>
<td></td>
<td>8 (3.8)</td>
<td>16 (2.7)</td>
</tr>
<tr>
<td>2006</td>
<td>12 (3.9)</td>
<td>17 (2.6)</td>
</tr>
<tr>
<td></td>
<td>8 (3.8)</td>
<td>16 (2.7)</td>
</tr>
</tbody>
</table>

nobilis Rich.), 50 pieces da⁻¹ of carp (K.), (Cyprinus carpio L.) and 10 pieces da⁻¹ grass carp (one and two-year) (A.,) (Clitorhynchus idella Val.) according to Nikolova et al. (2008a, b). The scheme of the experiment is presented in Table 1.

Each fish pond was sampled on one station localized 1 – 2 m from the shore before the outlet device (savak). The sampling was carried out biweekly between 8:30 and 11:00 a.m. in the period May-September of years 2004 and 2006 and June-September in 2005. The final sampling was carried out in the last decade of September. Some of the samples were taken with one to three days difference due to the large number of investigated characteristics. The collection of water samples was carried out from the 0.3 – 0.5m surface layer according to Bulgarian and European standards (e.g. Water Framework Directive 2000/60/EC). The majority of the samples were processed immediately after sampling.

For the analysis of biotic factors in the study were used the following methods:

Chlorophyll-a concentration in phytoplankton (μg.l⁻¹). The required amount of sample (fixed volume) is filtered through a glass fiber filter (GFA Millipore or GF1 Chm) with a pore size diameter of 0.7 – 1.2 μm, followed by extraction with 90% ethanol, acidification of a part of the filtrate and measurement using spectrophotometer Model 6105 (Jenway, UK) at 665 and 750 nm (including turbidity correction also) according to ISO-1/1980 and ISO 5667-2/1991. In the analyzed period were made 140 samplings.

Quantitative and qualitative composition of phytoplankton. The analysis of phytoplankton is implemented by the method of Laugaste (1974) using a chamber of Burker. The identification book of Cox (1996) is used. The samples were immediately preserved after sampling with formalin to a final concentration of 4%. In 2006, the starting levels in phytoplankton biomass were calculated using the concentration of chlorophyll-a by Vinberg (Fedorov, 1979):

\[
Bc = 15 \times \text{Chla}/1000
\]

where 15 is the factor of recalculation, Bc is biomass in mg.l⁻¹, and Chla is the concentration of chlorophyll-a. The relevant date was divided to 1000 to convert from μg.l⁻¹ into mg.l⁻¹. 140 samplings in the analyzed period were taken.

Quantitative and qualitative composition of zooplankton. The number was determined using the methodology of Dimov (1959) and the biomass (g.m⁻³) by volume-weight method (Pnkril, 1980). In this case, a representative number of individuals of each species are distributed by size classes and the biomass of each class is calculated. The samples were immediately preserved after sampling with formalin to a final concentration of 4%. Using hand trawling method during sampling, 60 μm mesh size plankton net was trawled horizontally ten times to capture zooplankton. 140 samplings were taken.

Bacterioplankton. Bacterioplankton number is determined by the Razumov's method of a direct microscopic count in its contemporary interpretation (Naumova, 1999) and the biomass (μgC.l⁻¹) is calculated according to Straskrabova et al. (1999) after the conversion of the mean cell volume in carbon content (Noric, 1993). The samples were immediately preserved after sampling with formalin to a final concentration of 2%. 80 samplings were taken, except in 2004, when the indicator was not included in the research.

The diverse characteristics of fish ponds presented by large number of measurements offer the possibility to apply statistical methods. Additionally the difference between fertilized and control ponds was tested by means of Wilcoxon rank paired test with statistical package STATISTICA 7.0 (Sokal and Rohlf, 1997; McGarigal et al., 2000).

Results and discussion

Chlorophyll-a

In 2004 a relatively highest levels in chlorophyll-a concentrations were registered in the two groups of fish ponds with maximum of 225 μg.l⁻¹ (29.06) in fertilized and 200 μg.l⁻¹ in the control group. In next year 2005 was the other extreme case with the lowest values, when maximum levels were 148 μg.l⁻¹ and 100 μg.l⁻¹ respectively, while 2006 had intermediate position. In typical summer months, June, July and August, the dynamics was seasonal and most often highest values of chlorophyll-a were recorded (Figure 1).

The prevalence of higher chlorophyll-a concentrations in the group of fertilized fish ponds in the three years of this experiment showed statistically significant (p = 0.045, Wilcoxon rank paired test) higher mean value (92 μg.l⁻¹) in them compared to the control group (79 μg.l⁻¹) (Figure 2). Fertilization with manure had positive influence on chlorophyll-a in each of the three years. Similar opinion was expressed by Garg and Bhatnagar (2002) and Kaggwa et al. (2009). Increasing the level of the green pigment in fertilized fish ponds was found by other authors (Tabinda and Ayub, 2010).

Phytoplankton biomass

During the three-year period average-seasonal minimum values of phytoplankton biomass in the fertilized fish ponds ranged from 0.61 mg.l⁻¹ to 1.10 mg.l⁻¹, in control ponds from 0.35 mg.l⁻¹ to 1.15 mg.l⁻¹. The maximum values were in the range 2.11 – 3.92 mg.l⁻¹. Overall, during initial samplings significant difference between the versions of the experimental set was not found. Obviously it takes time – about a month, so that the effect of fertilization to occur.

Changes in phytoplankton biomass during the three years revealed a clear seasonal turn. In late July and in early August there was intensive phytoplankton development in the two groups of fish ponds, but was better expressed in the fertilized group and reached its maximum at the end of August (Figure 3). In September a decrease trend was registered, better expressed in the control group of fish ponds.

Mean values of phytoplankton biomass were 18.18% higher in fertilized compared to control fish ponds (1.54 mg.l⁻¹ and 1.26 mg.l⁻¹ respectively) and with significant difference between them, p = 0.0001 (Figure 4). Fertilization with manure clearly influenced the
dynamics of phytoplankton biomass in these fish ponds compared with the control ones. Manure stimulated the phytoplankton organisms in dose of 3000 kg ha\(^{-1}\) even applied once at the beginning of the vegetation season. Our results give the evidence that the impact of manure on phytoplankton is continued almost until the end of September. For the three-year study period maxima in phytoplankton biomass (Figure 3) were registered in the summer months, which indicate that mainly the temperature, light and nutrient availability (bottom-up control) are important, but not the reduction by phytophagous fish and zooplankton (Fott et al., 1980). Fertilization with manure stimulates phytoplankton growth almost throughout the vegetation season. Kaggwa et al. (2009) and Kipkemboi et al. (2010) also found a positive response of phytoplankton to fertilization with manure.

Schroeder et al. (1990), in experiments with polyculture in earthen fish ponds, established, that during use of organic fertilization and analyses of gastric and intestinal contents of fish above 90% of yield was based on the carbon by the algae. For fish ponds Bulgakov et al. (1992) also found the role of fertilization on intensification in the processes of accumulation of phytoplankton biomass.

Zooplankton biomass

Overall, in the three-year research (Figure 5) the maximum in zooplankton biomass always was register at the beginning of the season, unfortunately with little time duration – about one/two weeks. The second characteristic peak in autumn is missing. From the middle/end of June zooplankton biomass was very low, less than 1 gm\(^{-2}\) in most cases and was insufficient as a trophic resource for farmed fish.

Comparison between mean values of zooplankton biomass for

Figure 1. Chlorophyll-a concentrations (mean values and standard deviations) by months in fertilized and control fish ponds in 2004 – 2006

Figure 2. Chlorophyll-a concentrations (mean values and standard deviations) in fish ponds by groups (fertilized and control) in 2004 – 2006 (Wilcoxon paired test, p<0.05)
the period 2004 – 2006 showed higher mean value in fertilized (1.68 gm⁻³) than in control fish ponds (1.36 gm⁻³), without significant difference, \(p = 0.863 \) (Figure 6). Fertilization with manure increased the biomass of zooplankton in the relevant fish ponds, but only in rare cases at the beginning of the season mainly in 2004 and partially in 2005 (Figure 5), which was insufficient for significant difference throughout the whole period. Analyzing key indicator groups showed predominance of large cladocerans in the fertilized and copepods in the control fish ponds. In rotifers differences between the variants of fertilization were not found.

Often the high fish density greatly reduced the population of the zooplankton (Qin and Culver, 1996; Britton et al., 2010) as in our case, and relatively high levels were only at the beginning of the season (Figure 5). Zooplankton in the rest of the vegetation season was limited to small species such as nauplii, small crustaceans (from Cyclopoida and Cladocera, own unpublished data) and rotifers, but they are not such effective in terms of filtration of algae. The realization of this effect means weak efficiency in using primary production through zooplankton to fish (Potužák et al., 2007).

In fertilized fish ponds more than 50% of the biomass of zooplankton belonged to the group of Cladocera, but unfortunately organisms with size greater than 1 mm were observed only at the beginning of the season in insufficient numbers. In control fish ponds the ratio Cladocera/(Copepoda+Rotatoria) is approximately 45/55%, which is an indication of much worse utilization of primary productivity. Fertilization with manure in single dose of 3000 kg.ha⁻¹ in terms of zooplankton was not enough to maintain a high level of large organisms throughout the season regarding the applied stocking densities of fish polyculture.

In 50% or higher dominance of Daphnia sp. or similar species, with mean body size at least 1.5 mm, efficient transfer of matter and energy can be expected through planktonic food web. In many water
bodies, according to many authors (Seda and Duncan, 1994; Pechar, 1995) zooplankton with such structure is able to reduce the development of phytoplankton. Similar community structure (especially with large *Daphnia* sp.), according to Carney (1990), is crucial in mediating both bottom-up and top-down effects, therefore plays a key role in the transfer of matter and energy in grazer food chain.

Bacterioplankton biomass

At the beginning of the experiment bacterioplankton biomass showed a similar level in both fertilized and control fish ponds and in summer months a trend to increase was registered, more pronounced in 2005 with maximum in August in one of the fertilized fish ponds (Figure 7).

During the two-year experiment (2005–2006) bacterioplankton biomass was 10% higher in the group of control fish ponds compared to fertilized ones, due to the lower biomasses in 2006 in fertilized ponds, and consequently no significant difference among them was found, p = 0.325 (Figure 8). The results showed that the mean values of bacterioplankton biomass were higher in the control ponds, but ranged more (StDev) in fertilized ponds. Fertilization with manure had not negative effect (the dose is not “overdose”) on the dynamics of bacterioplankton biomass in the fertilized fish ponds.

Bacterioplankton biomass was higher in fish ponds with higher phytoplankton biomass and with prevalence of copepods as a part of zooplankton biomass. The zooplankton pressure on bacterioplankton by Cladocera (especially *Daphnia* sp.) in the first 1–2 months is the reason of lower bacterial abundance and biomass, because cladocerans are predators of all components of the microbial loop and transfer efficiently the matter and energy (from the applied manure via bacteria in our case) to grazer food chain, according to other studies (Jürgens and Jeppesen, 2000; Zöllner et

Figure 5. Zooplankton biomass (mean values and standard deviations) by months in fertilized and control fish ponds in 2004–2006

Figure 6. Zooplankton biomass (mean values and standard deviations) in fish ponds by groups (fertilized and control) in 2004–2006 (Wilcoxon paired test, p>0.05)
(at the beginning of the experiment every year), and the autotrophic and heterotrophic picoplankton, including the bacterioplankton, becomes less important with increasing trophic state (Simon et al., 1992; Straškrabová et al., 1999; Jürgens and Jeppesen, 2000).

Sometimes the organic matter in fish ponds, although high, does not contain the optimum ratio of nutrients for bacterial growth (Jana et al., 2001; Hargreaves and Tucker, 2004) which is an explanation that in our study we find differences between bacterioplankton biomasses in fish ponds of one and the same group and in annual aspect.

Conclusion

Fertilization of fish ponds with manure in dose of 3000 kg ha⁻¹ creates the conditions for better development of phytoplankton by increasing the intensity of photosynthesis, which is expressed in the following significant differences: higher level of chlorophyll-a in fertilized compared to control fish ponds and higher phytoplankton biomass in fertilized compared to control fish ponds.

The experiment showed higher zooplankton biomass (by mean values) in fertilized fish ponds than in control ones, but the differences were statistically insignificant. No significant difference was found between control and fertilized fish ponds during the experiment regarding bacterioplankton biomass.
Acknowledgments
This study was made possible with the financial support of Agricultural Academy within the following two projects: “Characterization, relationships and possibilities for management of ecological parameters of fishponds for thermopile fish breeding (2004 – 2006)” and “Exploration of possibilities for introduction of organic farming in thermopile fish species breeding in Bulgaria (2004 – 2006)”.

References
Britton JR, Davies DG and Harrod C, 2010. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK. Biological Invasions, 12, 1533-1542.
Laugaste R, 1974. The sizes and the weights of the most widespread algae of the Chudsko-Pskov and Vyrtyjar lakes. Hydrobiological investigations, 6, 7-26 (Ru).

Review

Classical and modern concepts of inbreeding and effects of inbreeding depression in animals
S. Tanchev

Genetics and Breeding

Genotype by environment interaction in mutant lines of winter barley for grain yield
B. Dyulgerova, N. Dyulgerov

Genotype-environment interaction and stability analysis for grain yield of winter barley in the conditions of North-East and South Bulgaria
M. Dimitrova-Doneva, D. Valcheva, G. Mihova, B. Dyulgerova

Production Systems

Effect of predecessors on the productivity and phytosanitary condition of hull-less oats in organic farming
D. Atanasova, V. Maneva, T. Nedelcheva

Partial factor productivity of nitrogen fertilizer on grain and grain protein yield of durum wheat cultivars
G. Panayotova, S. Kostadinova

Influence of the dimensions of lifting brushes on the losses at direct harvesting of standing vine dry bean
I. Iliev, G. Milev

Energy productivity, fertilization rate and profitability of wheat production after various predecessors
II. Profitability of wheat production
Z. Uhr, E. Vasileva

Selectivity and stability of new herbicides and herbicide combinations for the seed yields of some field crops I. Effect at coriander (Coriandrum Sativum L.)
G. Delchev

Determination of some macro and micro elements in grain of winter barley genotypes

Agriculture and Environment

Effects of irrigation and fertilization on soil microorganisms
T. Dinev, I. Gospodinov, A. Stoyanova, G. Beev, D. Dermendzhieva, D. Pavlov
CONTENTS

Investigation on some biotic factors in carp fish ponds 62
D. Terziyski, H. Kalcheva, A. Ivanova, R. Kalchev

Investigation of some energy characteristics of pig farm 70
P. Kostov, K. Atanasov, I. Ivanov, K. Peychev, R. Georgiev

Variability in the resistance to bacterial spot causal agents Xanthomonas euvesicatoria P and Xanthomonas vesicatoria PT2 among Bulgarian and introduced pepper varieties 75
T. Vancheva, S. Masheva, D. Ganeva, N. Bogatzevska

Comparative analysis for macro and trace elements content in goji berries between varieties from China and R. Macedonia 79
B. Balabanova, I. Karov, S. Mitrev

Product Quality and Safety

Extraction and characterization of anthocyanin colorants from plant sources 85
S. Dyankova, M. Doneva

Heavy metal content in the meat of common carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss W.), cultivated under different technologies 90
St. Stoyanova, I. Sirakov, K. Velichkova, Y. Staykov
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with “*”.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. Criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. **Tables** should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Thesis:

Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.