Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
Investigation of some energy characteristics of pig farm

P. Kostov¹, K. Atanasov¹, I. Ivanov*, K. Peychev², R. Georgiev²

¹Department of Mechanics, Machine Building and Thermal Engineering, Faculty of Engineering and Pedagogy, Sliven, Technical University Sofia, Bulgaria
²Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

(Manuscript received 8 August 2015; accepted for publication 13 January 2016)

Abstract. Energy characteristics obtained as a result of project analysis of popular building structures designed for raising sows with piglets are presented in this study. Setting the energy features is achieved (Ordinance 15 by calculating dry, cooling and humidity load of the studied building). The parameters of the outside air according to the project calculations are temperature 36°C and relative humidity 31% (Livestock sites – design standards). After analysis on the dimensionality of the values which affect the heat flows of the building, it resulted in the following relation – showing the volume of heat incoming in the building at these particular conditions brought to 1 m³. The results obtained for the total cooling load are 1 m³ in different limited conditions. These results will allow to make a material model of the studied building, which is a premise for receiving dependences that could be used for each building. Data are obtained for specific cooling power and thermal resistances of the components in different constructional versions. The results are directed to the practice of making a suitable microclimate when using renewable energy sources in livestock buildings.

Keywords: pig’s building, energy, cooling power, criterion of similarity, analysis of dimensionality

Introduction

The main ways of coping with high temperature in the summer season in rooms for growing piglets are ventilation and the systems for evaporative cooling (Collin, 2001). These systems have substantial disadvantages. In ventilation systems the main problem is the need of large air flows, which leads to increasing the speed of air over the boxing systems (Jacobson et al., 2000, 2004; Andonov et al., 1989; Ugwushiwu, 2014). In systems for evaporative cooling a problem is the increase of relative humidity (Huynh et al., 2007; Lucas et al., 2000). At present, information for using an absorption refrigeration machine for cooling livestock buildings is scarce. This report will set early analyzing the particular case and especially the use of an absorption refrigerating machine which uses biogas as energy source.

The results of the present study are aimed at the use of renewable energy sources for cooling pig’s buildings by biogas and absorption refrigerating machine. Thereby, first off all we need to determine the needed cooling power which could cope with the heat indrafts of the building. That’s why the heat indrafts of the studied building must be calculated. So far some results regarding the heating and ventilation of a pig’s building have been published. The present work will initiate a possible solution of the problem with high temperatures during summer in pig’s buildings with the help of biogas. Biogas is derived from the waste of animals in the cooled rooms.

A research was made in cases of cooling pig’s buildings by ventilation (natural or forced) and was described in literary sources. There is no information about a detailed study of the temperature and speed fields when using an absorption refrigeration machine. The results of this study and also future studies for which the present work is a prerequisite, will give more information about the possibility of using renewable energy sources in livestock breeding, and in particular biogas as a source of energy for an absorption refrigerating machine which will be used to keep optimum temperature for animal breeding.

Recently renewable energy sources have been more and more widely used in livestock production. Lately air conditioning is considered a major factor in swine-breeding. The possibility of using biogas for air conditioning of industrial rooms with the help of absorption refrigerating machine is considered. A preparatory researches were made with positive results regarding the use of gas for such purposes. At the moment the current topic are the main energy features for helping the microclimate in industrial sites.

The goal is to get relations which could allow to predict the approximately needed power of the absorption refrigerating machine. These relations actually show the influence of different factors which determine the heat load of the building – temperature difference between the ambient air and the air in the room, the organic heat of the animals, the wind speed, intensity of the sun shine, thickness and structure of the surrounding walls and roof. The results will be received by the project calculations for the typical buildings in different conditions. Setting these relations will give us an idea about the significance of each of the listed factors. The final goal of this report is to get a dependence which contains the factors mentioned above.

Material and methods

The following is a scheme of a commonly used type of building with dimensions (Georgiev, 1983). In this case its dimensions are L – 23.5m length, D – 12m width and H1 – 3.5m, H – 2.5m height (Figures 1 and 2).

The parameters of the outside air according to the project calculations are temperature 36°C and relative humidity 31%. The desired parameters of the microclimate in the reviewed building are 25°C and relative humidity 60% (Nenov 1986). These are values...
satisfying the requirements of the Regulation for designing livestock sites. The specified temperature and relative humidity of the air are in range covering the requirements for nursing pigs and piglets (from 1 to 56 days old), shown in a table in the Regulation for designing livestock sites. When calculating the cooling load of the building the following is taken into consideration heat flow by heat transfer through thick building structures (suntlit), heat flow and sunlight through glass elements, heat flows of the animals and also humidity cooling load. There is a possibility of compensation for any heat flows of radiant heating or other animals imposed by climatic conditions.

On Figure 3 is the structure of the surrounding walls. The layers of walls are 20 mm plaster λ = 0.87 W/(m.K), 200 mm concrete λ = 1.63 W/(m.K), 50 mm insulation extruded polystyrene λ = 0.041 W/(m.K) and 20 mm plaster λ = 0.70 W/(m.K).

Table 1. Charge on αₐ depending on the wind speed

<table>
<thead>
<tr>
<th>Wind speed (m/s)</th>
<th>αₐ W/(m².K)</th>
<th>q₁ W/(m².K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9.5</td>
<td>21.48</td>
</tr>
<tr>
<td>10</td>
<td>12.4</td>
<td>23.89</td>
</tr>
<tr>
<td>12</td>
<td>15.92</td>
<td>26.13</td>
</tr>
</tbody>
</table>

Figure 1. Building scheme

Figure 2. Vertical section of building

Figure 3. Structure of outer walls

The roof is built from metal sheets with insulation 50 mm with approximately overall heat transfer coefficient U = 0.704 W/(m².K). In determining the ratio of heat transfer from the environment, two relations are used accordingly for forced and for free convection (in no wind conditions and in case of wind). In both cases the sun shine is taken into consideration, cases for wind speed – 2, 4, 6, 8, 10, 12 m/s have been considered. The values obtained for αₐ (α – heat transfer coefficient W/(m².K)) are shown in Table 1. The cooling load of the exact building is calculated by a known method (Livestock building, 2006).

Determining the heat flows

Heat flux in dense building structures and elements in the sun

\[
\Phi_{i} = U A \Delta \theta_{ci} \tag{1}
\]

where U is heat transfer coefficient W/m².K, A is area of the item m², \(\Delta \theta_{ci}\) is temperature difference for cooling load (under conditions other than 35°C outside temperature and inside temperature 25.5°C \(\Delta \theta_{ci}\) is calculated).

\[
\Delta \theta_{ci} = [(\Delta \theta_{ci} + K_{q}) K_{s} + (25.5 – \theta_{i}) + (\theta_{i} – 29.4)] K_{t} \tag{2}
\]

where \(K_{q}\) is correction for a given month of the year, \(K_{s}\) is correction for color surface, \(\theta_{i}\) is air temperature in the pig livestock buildings, \(\theta_{s}\) is average temperature of the outside air and \(K_{t}\) is correction for ventilated attic space with outdoor air.

Average temperature of the outside air \(\theta_{s}\)

\[
\theta_{s} = \theta_{s}^{*} – \Theta / 2 \tag{3}
\]

where \(\theta_{s}^{*}\) is outdoor July temperatures, \(\Theta\) is daily variations of temperature for different months and regions in Bulgaria.

For reasons enough natural light, the area of influence in the windows heat flux \(\Phi_{i,F,L}\)

\[
\Phi_{i,F,L} = U A' (\theta_{s}^{*} – \theta_{ci}) \tag{4}
\]

where U is thermal transmittance through the glass elements W/m².K, A’ is area glazing elements m².

Outside air temperature for the hour of the day \(\theta_{ci}\)

\[
\theta_{ci} = \theta_{s}^{*} – \Theta \frac{K_{t}}{100} \tag{5}
\]

where \(\Theta\) is daily variations of outside temperature, \(K_{t}\) is correction of the outside temperature.

Cooling load from solar radiation through the sunned of the glazing element \(\Phi_{i,F,S,L}\)

\[
\Phi_{i,F,S,L} = A_{g} \Phi_{in} F_{S, SC} F_{L} \tag{6}
\]

where \(A_{g}\) is area of the glazing elements m², \(\Phi_{in}\) is maximal heat flux of diffuse radiation (w/m²), \(F_{S, SC}, F_{L}\) are correction factors.
Cooling load from internal sources \(\Phi_{\text{int}} \) of animals

\[
\Phi_{\text{int}} = n \Phi_{\text{int}}^a,
\]

where \(n \) is number of animals, \(\Phi_{\text{int}} \) is heat flux of one animal (W).

Heat flux of evaporated humidity \(\Phi_{\text{evap}} \)

\[
\Phi_{\text{evap}} = 1000 \Sigma \dot{m}_w h_w j,
\]

where \(\dot{m}_w \) is separate steam from a pig (kg/h), \(h_w \) is enthalpy of the steam at temperature equal to the temperature of the skin of the pig (kJ/kg).

Heat flux of ventilation \(\Phi_{\text{vent}} \)

\[
\Phi_{\text{vent}} = n V_{\text{a}} (h_s - h_{\text{ref}})
\]

where \(n \) is number of animals, \(V_{\text{a}} \) is required amount of fresh air for one animal (m³/s), \(h_s \) is the enthalpy of the outside air (kJ/kg), \(h_{\text{ref}} \) is the enthalpy of the air inside the building (kJ/kg).

The distribution of all heat flows is the following: dry, cooling, heat transfer - walls - south - 826.81W, north - 604.4W, east - 363.11W, west - 214.91W, ceiling - 15013W, windows - 12181W.

By sun shining - through the transparent and opaque elements - 7728.42W. Organic separated heat by animals - 12194.26W (also the heat by heating the newborn pigs is added). Humidity load - by the separated moist of animals - 4617W and by wet floor - 2579W.

The final results after processing and showing in graphic form will be useful for determination of the cooling load of such types of buildings, which is the intended final result of this work.

Results and discussion

Currently the considered solutions of the problem dealing with high summer temperatures in buildings for raising the piglets are not so particularly reviewed in terms of energy effectiveness of the buildings. Different solutions for natural ventilation of farms for raising piglets and evaporative cooling of this type of buildings have been studied. The possibility of maintaining the desirable microclimate in buildings for raising piglets with the help of refrigerating machine, will allow to eliminate the disadvantages of the other two methods shown above. To be able to choose more powerful refrigerating machine for this case, it is necessary to determine the energy features of the building.

After the calculations made for the exact building, which is an object of the present study, we have a few dependences which will allow us to determine the specific needed quantity cold for cubic meter of volume for any building when the main features are known (thickness and structure of the surrounding walls, temperature of the ambient air in the hottest summer month, average and maximum speed of the wind for the exact region, and also the number and type of pigs which will be fedged in the building).

The distribution by shares of the heat flows in the studied building is clearly seen in the chart (Heat flows). The need of the required heat insulation of the roofs on this type of buildings, the effect of heat insulation of the surrounding walls become evident, the largest heat flow w- the animals- is also seen.

When determining the heat flows of the building three design options are considered in Table 2. To summarize the reaction of the studied building with the environment in a cooling regime, dimensionless complexes are displayed which contain specific values based on the analysis of the dimensions. In general form the dependence has the following appearance:

\[
Q = f(\Delta t, \alpha, q, \lambda, \delta)
\]

where \(\alpha_s \) is heat transfer coefficient W/(m². K), \(\lambda \) is thermal conductivity W/(m.K), \(\Delta t \) is temperature difference, \(K, \delta \) is thickness of the surrounding walls (m), \(q \) is specific individual biological heat of a farrow (W/m³), \(\Phi \) is specific cooling power (W/m³) (by taking into consideration heat flows of the radiant heating designed for the piglets in the initial period of their growth).

<table>
<thead>
<tr>
<th>Option</th>
<th>Insulated walls</th>
<th>South</th>
<th>North</th>
<th>East</th>
<th>West</th>
<th>(Q_{2}, W)</th>
<th>(Q_{2}, W/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>33235</td>
<td>47.14</td>
</tr>
<tr>
<td>Option 2</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>31668</td>
<td>44.92</td>
</tr>
<tr>
<td>Option 3</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>30641</td>
<td>43.46</td>
</tr>
</tbody>
</table>

Dependence (1) can be represented as a function depending on the type:

\[
Q = C \cdot \Delta t^a \cdot \alpha^b \cdot \delta^c \cdot \lambda^d \cdot q^e
\]

As a parameter heat transfer coefficient includes radiant components. Also different conditions are reviewed (wind speed) from 0 to 9 m/s (HVME Guide Book A, 2000) according to the recommendations.

Given the targets, it looks an acceptable equation to be submitted as a generalized dependence in accordance with recommendations. Given the existing dependence with the look of dimensionality (Huntley, 1970), the equation is written in the following way:

\[
T^{-1} \cdot H^{-1} = \Omega^{-1} (L^{-1}, T^{-1}, H, \Theta^{-1})^{-1} (L^{-1}, T^{-1}, H, \Theta^{-1}) (12)
\]

where \(T \) is dimensionless time, \(H \) is dimensionless weight, \(L \) is dimensionless length, \(\Theta \) is dimensionless temperature, these indications are common in dimensional analysis.

Finally from the equation (11) the following was derived:

\[
Q = \frac{\Delta t}{\delta} \left(\frac{q \delta}{\alpha} \right) \left(\frac{\lambda}{\alpha} \right)^d : [W/m²] \]

Formula (4) presented in dimensionless form

\[
Q \delta = \left(\frac{q \delta}{\alpha} \right) \left(\frac{\lambda}{\alpha} \right)^d \]

On Figure 4 the limited results at \(\lambda \alpha, \delta \) - min and \(\lambda \alpha, \delta \) - max, are shown. The minimal values of \(\alpha \) are in case of lack of wind, and the maximum values are at wind with speed up to 12 m/s (often reached in the area of the designed building). R-coefficient of correlation is between \(\lambda \alpha, \delta \) - min and \(\lambda \alpha, \delta \) - max The graphics show the nature of the equations describing the interval of all heat flows of the studied building.
The graphics shown on Figure 5 actually define the possible interval of the needed cold production of the accepted building standards and potential weather conditions.

Conclusion

The percentage alignment of the heat flows of the studied building clearly shows that the largest part is by organic heat produced by the animals. Insulation of the surrounding walls could reduce the heat flows from 4% to 8% in this particular case. The largest share of the heat flows in heat transfer are through the roof which confirms its mandatory thermal insulation. During the project calculations the influence of wind speed, and especially the increase of the outside coefficient of heat transfer up to several times have become clear. The graphics shown on figure 4 actually define the possible interval of the needed cold production of the accepted building standards and potential weather conditions. They can be used for quantitative motivated choice of absorption refrigeration installations; possible combination of such installations and also their absolute quantity.

Reference

Chao Zong, Guoqiang Zhang, Hao Li and Li Rong, 2014. Investigation on ventilation characteristics in a full-scale model pig
house with partial pit ventilation system. Proceedings International Conference of Agricultural Engineering, Zurich, Denmark.

Ordinance 15 by calculating dry, cooling and humidity load of the studied building. Blestiasht Fakel 2007 Sofia (Bg).
Review

Classical and modern concepts of inbreeding and effects of inbreeding depression in animals
S. Tanchev 3

Genetics and Breeding

Genotype by environment interaction in mutant lines of winter barley for grain yield
B. Dyulgerova, N. Dyulgerov 14

Genotype-environment interaction and stability analysis for grain yield of winter barley in the conditions of North-East and South Bulgaria
M. Dimitrova-Doneva, D. Valcheva, G. Mihova, B. Dyulgerova 19

Production Systems

Effect of predecessors on the productivity and phytosanitary condition of hull-less oats in organic farming
D. Atanasova, V. Maneva, T. Nedelcheva 24

Partial factor productivity of nitrogen fertilizer on grain and grain protein yield of durum wheat cultivars
G. Panayotova, S. Kostadinova 28

Influence of the dimensions of lifting brushes on the losses at direct harvesting of standing vine dry bean
I. Iliev, G. Milev 37

Energy productivity, fertilization rate and profitability of wheat production after various predecessors
II. Profitability of wheat production
Z. Uhr, E. Vasileva 41

Selectivity and stability of new herbicides and herbicide combinations for the seed yields of some field crops I. Effect at coriander (Coriandrum Sativum L.)
G. Delchev 46

Determination of some macro and micro elements in grain of winter barley genotypes

Agriculture and Environment

Effects of irrigation and fertilization on soil microorganisms
T. Dinev, I. Gospodinov, A. Stoyanova, G. Beev, D. Dermendzhieva, D. Pavlov 58
Investigation on some biotic factors in carp fish ponds
D. Terziyski, H. Kalcheva, A. Ivanova, R. Kalchev

Investigation of some energy characteristics of pig farm
P. Kostov, K. Atanasov, I. Ivanov, K. Peychev, R. Georgiev

Variability in the resistance to bacterial spot causal agents Xanthomonas euvesicatoria P and Xanthomonas vesicatoria PT2 among Bulgarian and introduced pepper varieties
T. Vancheva, S. Masheva, D. Ganeva, N. Bogatzevska

Comparative analysis for macro and trace elements content in goji berries between varieties from China and R. Macedonia
B. Balabanova, I. Karov, S. Mitrev

Product Quality and Safety

Extraction and characterization of anthocyanin colorants from plant sources
S. Dyankova, M. Doneva

Heavy metal content in the meat of common carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss W.), cultivated under different technologies
St. Stoyanova, I. Sirakov, K. Velichkova, Y. Staykov
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Todorov N and Mitev J. 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IX International Conference on Production Diseases in Farm Animals, September 11–14, Berlin, Germany.

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.