Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate an author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have been submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editors and Sections

Genetics and Breeding
Tsanko Yablanski (Bulgaria)
Atanas Atanasov (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothchilid (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Bojin Bojinov (Bulgaria)
Stoicho Metodiev (Bulgaria)
Svetlana Georgieva (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Zervas Georgios (Greece)
Ivan Varlyakov (Bulgaria)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Ramesh Kanwar (USA)
Martin Banov (Bulgaria)
Peter Cornish (Australia)

Product Quality and Safety
Marin Kabakchiev (Bulgaria)
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)
Roumiana Tsenkova (Japan)

English Editor
Yanka Ivanova (Bulgaria)
AGRICULTURAL
SCIENCE AND TECHNOLOGY

2016

An International Journal Published by Faculty of Agriculture,
Trakia University, Stara Zagora, Bulgaria
Breeding programme for developing new sweet cherry cultivars in the Fruit Growing Institute, Plovdiv, Bulgaria

S. Malchev*, A. Zhivondov

Fruit Growing Institute, 12 Ostromila, 4004 Plovdiv, Bulgaria

(Manuscript received 2 June 2016; accepted for publication 21 September 2016)

Abstract. Sweet cherry is a major structural species in Bulgaria. According to the Ministry of Agriculture and Food, in 2010 it occupied 21% of the fruit tree areas, which defined it as a leading fruit crop. It represents 16% of the total fruit production in the country, as is the relative share of peach, being surpassed only by apple and plum production. The increased interest in establishing new cherry plantations necessitates the provision of new market-oriented cultivars with a better sensory profile of the fruits, resistant to biotic and abiotic stress factors, suitable for creating modern intensive cherry plantations. The Bulgarian sweet cherry cultivars are chronologically discussed and a thorough description of the development of the sweet cherry breeding programme, launched at the Fruit Growing Institute in Plovdiv in 1987, is presented. Current objectives comply with the world’s major breeding trends and the changing market requirements. The paper reflects the main objectives of the programme and the finalized products obtained in the last twenty years of the past century and first decade of the new millennium, i.e. the new cultivars ‘Kossara’, ‘Rosita’, ‘Rozalina’ and ‘Thrakiiska hrushtyalka’ and some promising hybrids.

Keywords: Prunus avium, cultivars, hybrids, breeding programme

Introduction

In the period between 1980 and 1990, 156 new cherry cultivars were developed (Bargioni et al., 1998) and in the period 1991 – 2004 the number of new cultivars surpassed 230, 116 of them being created in Europe, 71 in North America and 33 in Asia. According to that statistical data the sweet cherry crop ranks second after peach in number of newly created cultivars (Sansavini and Lugli, 2008). Nowadays it could be stated that in all the countries with well-developed sweet cherry production, active breeding activities are being carried out for creating new sweet cherry cultivars and rootstocks by applying varied breeding methods (Vogel, 1981; Christensen, 1985; Bargioni et al., 1998; Sansavini and Lugli, 2008). The major breeding aims set in the breeding programmes, refer to self-fertility; extending the period of fruit ripening; resistance to Monilinia, Blumeria and Pseudomonas; high and regular fertility; decrease of tree growth vigour; large fruit size; fruit quality improvement, resistance to cracking (Christensen, 1985; Trefois, 1986; Kappel, 2008; Sansavini and Lugli, 2008; Milatović and Nikolić, 2011).

Materials and methods

Breeding Activities for Sweet Cherry Improvement at the Fruit Growing Institute, Plovdiv – creating F1 hybrid generation

The sweet cherry breeding programme of the Fruit Growing Institute (FGI), Plovdiv started in 1987. The major objectives set in the programme at the initial stage were:

- Developing self-fertile cultivars;
- Developing self-fertile cultivars with compact crowns;
- Developing self-fertile, early ripening cultivars bearing large sized fruit.

The cultivars ‘Van’, ‘Stella’, ‘Compact Van’, ‘Compact Stella’, ‘Rivan’ and ‘Sunburst’ were chosen for creating F1 hybrid generation. Other suitable cultivars were additionally included in the programme depending on their supply to the collection of the...
Institute and the results of the carried out studies. The early cultivars 'Bigarreau Burlat', 'Early Chêna', 'Ohio Beauty' and 'Early Rivers' were additionally included in the programme. The cultivars 'Compact Lambert' and 'Starkrimson' cherry participated in the programme for creating self-fertile hybrids with compact tree crowns. The late ripening cultivars 'Germersdorfer', 'Badacsony', 'Ferrovia spur', 'Lapins' and the very late one 'Sweet September' were included in the breeding scheme with the aim of extending the cherry ripening season. Evaluation of the seedlings, selection and propagation of elites started after their entering the fruit-bearing stage, in the period 1996-2000, and the candidate cultivars were nominated after 2000.

Breeding Activities for Sweet Cherry Improvement at the Fruit Growing Institute, Plovdiv – creating F2 hybrid generation

The creation of second hybrid generations started within the period 1996-2000 and the process is still continuing. New possibilities for obtaining considerably better results in establishing the cherry hybrid fund at the Fruit-Growing Institute in Plovdiv were also provided by the specific biotechnological decisions for in vitro cultivation, propagation and adapting the cherry embryos of early ripening parent cultivars and forms (Gercheva, 1991; Gercheva and Zhivondov, 2002).

The constant updating of the hybridization programme has necessitated annual changes for its improvement. Until 2012 inclusive, the number of the parent combinations used throughout the years has surpassed 120. Adding new breeding objectives to the programme complies with the market tendencies and the changing consumer preferences.

The strategic aim of the programme was to contribute to the restoration of the competitiveness of Bulgarian fruit-growing by breeding new and introduction of perspective sweet cherry cultivars and rootstocks. Programme implementation has resulted in the establishment and studying new cultivars and rootstocks having market-oriented characteristics, such as:

- early and very early larger-fruited cultivars;
- late cultivars ripening after the usual season;
- cultivars ripening after 'Bigarreau Burlat' and before 'Bing';
- self-fertile cultivars of both intensive red and light fruit colour;
- cultivars having a firm fruit texture, resistant to cracking;
- cultivars and rootstocks resistant to biotic and abiotic stressors;
- cultivars and rootstocks having poor and moderate growth vigour;
- An important activity is the introduction of new and perspective cultivars and rootstocks with the aim of including them in the hybridization programmes.

Results and discussion

For 25 years now a rich genetic fund of first generation hybrids and quite a big fund of second generation hybrids has been established. Until 2011 the total number of the hybrids consisted of over 2600 plants of 58 populations, 31 of them obtained as a result of controlled hybridization, 26 populations obtained by open pollination and 1 population comprising seedlings of an unknown origin. A mass selection was made among the hybrids of the uncontrolled populations at the initial stages. After the breeding evaluation performed by stages, 114 elites were selected depending on their period of fruit ripening and, among them, 4 candidate-cultivars were submitted for official testing by the Executive Agency for Variety Testing, Field Inspection and Seed Control (Zhivondov, 1994; Zhivondov et al., 2004; Zhivondov, 2005a; 2008).

The first breeding achievements of the programme for sweet cherry cultivar improvement have already been accomplished. In March 2008 the first sweet cherry cultivar 'Kossara' created at the Fruit-Growing Institute in Plovdiv, was officially registered. It was obtained by the in vitro method – embryorescue, as a result of crossing the early cultivars 'Ranna Chêna' × 'Bigarreau Burlat'. Its fruits ripen very early – 5 – 10 May and practically they mark the beginning of the sweet cherry ripening season in our country. Rendering an account of the early period of ripening, the fruits are very large – 8 g, i.e. as large as those of 'Bigarreau Burlat' cultivar, however 'Kossara' ripens 10 days before the standard. The fruit shape is cordate, dark red, juicy, deep sweet-sour in taste, having dark red juice (Zhivondov and Gercheva, 2009).

'Rosita' and 'Rosalina' are the two new cultivars bearing light-coloured fruit. They were officially registered in February 2009. 'Rosita' was selected from a population obtained by embryorescue from open pollination of 'Bigarreau Burlat'. Its fruits ripen very early – 3 – 4 days after those of 'Kossara' and a week before 'Bigarreau Burlat'. They are very large – 7.5 g, kidney-shaped, light yellow in colour with light red blush covering up to 50% of the fruit surface. Its taste qualities are very good. 'Rosalina' was obtained by conventional breeding from open pollination of 'Van' cultivar. Its fruits ripen about 5 June, i.e. a week before those of 'Van'. They are very large – 9 – 10 g, kidney-shaped, with a very dense texture and an excellent taste. The fruit skin is creamy yellow as a basic colour, mottled with light red blush covering about 60 – 70% of the fruit surface.

The latest cultivar 'Trakiiska hrushtyalka' was selected from a population obtained by open pollination of 'Van' cultivar. Its fruits ripen 3 – 4 days before those of 'Van' and 3 – 4 days after those of 'Rosalina'. In that way, the two new later ripening cultivars partially fill the gap between the ripening periods of 'Bigarreau Burlat', on the one hand, and 'Bing' and 'Van', on the other, which was in fact one of the objectives set in the breeding programme. The fruits of 'Trakiiska hrushtyalka' are very large – about 10 g, kidney-shaped, dark red in colour, very dense in texture, with an excellent taste (Zhivondov et al., 2004; Zhivondov, 2008).

Out of the selected and propagated hybrids, the studies of which are at an advanced stage, the most interesting are:

- Elite 20-31 was selected from a population obtained by open pollination of 'Van'. The ripening period precedes that of the standard 'Bigarreau Burlat' by 6 days and it is a good alternative to 'Nalina' cultivar thanks to its better taste qualities and dark red colour of the fruit flesh, juice and skin;
- Elite 20-77 originates from open pollination of the cultivar 'Starkrimson' Cherry, from which it inherited the typical colour and mottling of the fruit skin. The period of ripening is medium early (8 days before 'Van'). Important advantages are its self-fertility and late flowering period;
- Elite 17-90 was selected from a population obtained by open pollination of 'Van' and its ripening period precedes the new cultivar 'Trakiiska Hrushtyalka' by 1 – 2 days and the standard cultivar 'Van' by 4 – 6 days. The Elite is characterized by very good fertility and very large fruits of over 8 g without irrigation;
- Elite 20-47 was obtained by open pollination of 'Compact Van'. The fruits have excellent taste qualities and an attractive appearance. They ripen 6 days before those of 'Van'. The major characteristics of the elite are: weak growth vigour, compact habit, high and regular fertility and marked frost resistance;
- Elite 28-208 was created as a result of the hybridization
between the late cultivars 'Lambert' and 'Badacsony'. Fruit weight is about 9 g and the fruits ripen 5 days before those of 'Van'. The Elite is frost resistant and the mass flowering is about a week later compared to the group of the late flowering cultivars.

- Elite 28-209 originates from 'Lambert' × 'Badacsony'. It is characterized by a well-defined cordate fruit shape. The average fruit weight is 8.86 g without irrigation, the fruits are dark coloured, with a long pedicel (40 mm) and well-balanced taste.
- Elite 17-37 was selected from a population obtained by open pollination of 'Van'. The fruits are very large – about 9 g without irrigation and they are late ripening– 2 – 3 days after 'Van'.

Conclusion

A rich and varied sweet cherry genetic fund has been maintained and investigated in FGI-Plovdiv, which is an advantage for the success of the breeding activities. The breeding characteristics of a number of sweet cherry cultivars and the combinations among them, used in the programme as donors of certain specific characteristics, have been studied and defined. New possibilities for obtaining considerably better results in establishing the cherry hybrid fund were also provided by the specific biotechnological decisions for in vitro cultivation, propagation and adapting the cherry embryos of early ripening parent cultivars and forms. Rich genetic hybrid funds of the first (F1) and second (F2) generations were established. Series of sweet cherry elites have been selected. The first 4 new cultivars ('Kossara', 'Rosita', 'Rosalina' and 'Trakiska hruštyalka') were created and officially registered by EAVTFISC. A large selection of new sweet cherry candidate-cultivars with very good characteristics is available for submitting and official testing. All this is a very good basis for further success of the sweet cherry breeding activities carried out at the Fruit Growing Institute in Plovdiv.

References

Hristov N, Georgiev V and Stoyanova A, 2005. Some problems of sweet cherry production around the world and in our country and the contribution of the Institute of Agriculture, Kyustendil for the improvement of cherry cultivars in Bulgaria. Scientific Works of the National Centre of Agricultural Sciences, 3, 40-45 (Bg).
Zhivondov A, 2005b. Tendencies in the development of sweet cherry cultivars – stages of breeding. Scientific Works of the National Centre of Agricultural Sciences, 3, 50-53 (Bg).
Review

Triticale – past and future
St. Dobreva 271

Genetics and Breeding

Productivity performance of bread winter wheat genotypes with local and foreign origin
G. Raykov, P. Chamurliyski, S. Doneva, E. Penchev, N. Tsenov 276

Production properties of flax (*Linum usitatissimum* L.) cultivated in Strumica region, Republic of Macedonia
P. Vuckov, M. Ilievski, D. Spasova, L. Mihajlov, N. Markova-Ruzdić 280

Quality of grain and flour of foreign bread wheat cultivars (*Triticum aestivum* L.) under the conditions of south Dobrudzha region
P. Chamurliyski, N. Tsenov, I. Stoeva, S. Doneva, E. Penchev 283

Breeding programme for developing new sweet cherry cultivars in the Fruit Growing Institute, Plovdiv, Bulgaria
S. Malchev, A. Zhivondov 289

Heterosis manifestations by survival and larval duration of F1 *Bombyx mori* L. hybrids
R. Guncheva, M. Panayotov, P. Tsenov, Y. Dimitrova 292

Nutrition and Physiology

Reproductive performance of breeding rabbits fed by graded levels of cassava (*Manihot esculenta*) leaf meal
T. Ahemen, I.I. Bitto, O.I.A. Oluremi 297

Clinical toxicological investigations on acute carbofuran intoxication in quails (*Coturnix coturnix*)
R. Binev, I. Valchev, R. Mihaylov, Y. Nikolov 302

Production Systems

Efficacy and timing of some new products against pear psylla (*Cacopsylla pyri* L.) (Hemiptera: Psyllidae): II. Spirodiclofen
V. Arnaudov 306

Biochemical and chemical investigations of pikeperch fingerlings (*Sander Lucioperca* L.) after wintering
A. Ivanova, R. Atanasova 310
Effect of fluorescence on the technological characteristics of cocoons at different cooking temperatures
M. Panayotov

Comparative analysis of plane geometric parameters of various types of cow milking parlors
D. Georgiev

Agriculture and Environment

Panthaleus major (Duges) of cereals in Bulgaria
V. Maneva, D. Atanasova

Selectivity and stability of herbicides and their tank mixtures for the seed yield of sunflower (Helianthus Annuus L.)
G. Delchev, T. Barakova

Effect of green manure cover crops on tomato greenhouse production
I. Tringovska, V. Yankova, D. Markova

Reclamation of lands disturbed by mining activities in Bulgaria
I. Kirilov, M. Banov

Product Quality and Safety

Fish production and meat quality traits in rainbow trout (Oncorhynchus mykiss) farmed in different production systems
St. Stoyanova, Y. Staykov, G. Zelqzkov, I. Sirakov, G. Nikolov
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract. List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter and without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Thesis: Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bulg.).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.