Scope and policy of the journal

Agricultural Science and Technology /AST/ – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website.

Submission of Manuscripts

All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate one author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary.

The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc. and AGRIS (FAO).

The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University, Student's campus, 6000 Stara Zagora Bulgaria
Telephone.: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone.: +359 42 699446
E-mail: editoffice@agriscitech.eu
Clinical toxicological investigations on acute carbofuran intoxication in quails (Coturnix coturnix)

R. Binev*, I. Valchev†, R. Mihaylov‡, Y. Nikolov

1Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
2Department of Animal Morphology, Physiology and Nutrition, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

(Manuscript received 7 September 2016; accepted for publication 19 October 2016)

Abstract. The present study was conducted to evaluate the toxic effects of the carbamate insecticide carbofuran (Carbosan 35 ST) after experimental acute intoxication in quails (Coturnix coturnix). Experiments for monitoring of changes in clinical indices and some haematological parameters. Quails were divided into 5 groups: one control and 4 experimental. They were treated by increasing single doses of the tested pesticide: 1.05 mg/kg (experimental group I), 2.1 mg/kg (experimental group II), 5.25 mg/kg (experimental group III) and 10.5 mg/kg (experimental group IV), corresponding to 1/10 LD50, 1/5 LD50, 1/2 LD50 and LD50 oral doses for albino rats, respectively. In three consecutive days prior to the treatment (hours –48, –24 and 0) and 1, 3, 5, 7, 24 and 48 hours thereafter, the clinical status was registered to evaluate rectal body temperature, faeces excretion, locomotion, perception etn. and were obtained blood samples from v. subcutanea ulnaei or v. metatarsae ulnaei for analysis of haemoglobin content (HGB). It was found out that the tested carbamate insecticide had some toxic effects manifested clinically with hyperaemia, arexia, difficulty in focusing the eyes, salivation with thick saliva discharge, diarrhoea, generalised tremor, clonic tonic spasms (especially of cervical muscles), depression and hypochromaemia. The described changes were the most obvious thereafter, the clinical status and LD50 oral doses for albino rats, respectively.

In intoxicated quails, arexia, difficulty in focusing the eyes, salivation with thick saliva discharge, diarrhoea, generalised tremor, clonic tonic spasms (especially of cervical muscles), depression and hypochromaemia. The described changes were the most obvious thereafter, the clinical status and LD50 oral doses for albino rats, respectively. In intoxicated quails, arexia, difficulty in focusing the eyes, salivation with thick saliva discharge, diarrhoea, generalised tremor, clonic tonic spasms (especially of cervical muscles), depression and hypochromaemia. The described changes were the most obvious thereafter, the clinical status and LD50 oral doses for albino rats, respectively. In intoxicated quails, arexia, difficulty in focusing the eyes, salivation with thick saliva discharge, diarrhoea, generalised tremor, clonic tonic spasms (especially of cervical muscles), depression and hypochromaemia. The described changes were the most obvious thereafter, the clinical status and LD50 oral doses for albino rats, respectively. In intoxicated quails, arexia, difficulty in focusing the eyes, salivation with thick saliva discharge, diarrhoea, generalised tremor, clonic tonic spasms (especially of cervical muscles), depression and hypochromaemia. The described changes were the most obvious thereafter, the clinical status and LD50 oral doses for albino rats, respectively.

Keywords: quails, carbamate insecticide, carbofuran, intoxication, clinical signs

Introduction

Pesticides are a large group of chemical compounds intended to control insects (insecticides), rodents (rodenticides), weeds (herbicides), agents of fungal diseases (fungicides) etc. (Klaassen, 2008). In modern agriculture, the use of these preparations is a limiting factor for protection of plants from pests and their use serves to increase crop yields. The wide application and toxicity of these preparations is a global ecotoxicological problem (Guitart et al., 2010a). The continuous and uncontrolled pollution of soils and waters with pesticides for plant protection could have a dangerous impact by contamination of plants, some of which are consumed by humans and another part serves for feeding livestock producing main foods of animal origin. That is why the use of pesticides is a global ecotoxicological problem (Guitart et al., 2010a).

The largest pesticide group is that of insecticides, mainly represented by carbamates and organophosphate compounds. The toxicokinetics of carbamate pesticides is due to altered activity of cholinesterase, but organocarbanate compounds bind to the active site of the enzyme via reverse carbamylation (Peranantham et al., 2014).

One of the most commonly used and most toxic carbamate insecticides is carbofuran (Carbosan, Furadan, Curater). These properties of carbofuran are the cause for increased cases of intoxication in domestic animals (Martínez-Haro et al., 2008; Guitart et al., 2010a; Novotný et al., 2011), game birds, wild mammals, rodents (Ogada, 2014), fish, beneficial insects (Guitart et al., 2010b), as well as in men (Tennakoon et al., 2013; Peranantham et al., 2014) at both national and global scale. The utilisation of carbamate preparations (carbofuran) as baits for control of harmful rodents results in massive intoxications of wild birds (vultures, hawks, eagles etc.) (Mineau and Tucker, 2002a,b; Brasel et al., 2007), including quails (de Lavaur et al., 1991; Modra and Svobodova, 2009; Toll et al., 2010). Having investigated accidents with wild birds in the USA, Great Britain and Canada between 1985-1995, Mineau and Fletcher (1999) established that carbamate and organophosphate insecticides have induced the greatest number of intoxications – 520 registered cases. The main cause was negligence as treated seeds (wheat and corn) were not well buried in the ground and therefore were picked up by birds or they were secondarily intoxicated from eating earthworms contaminated with pesticides.

In previous studies of ours on blood enzyme activity in quails (Binev et al., 2014b), treated with increasing doses of the carbamate insecticide carbofuran, reduced serum cholinesterase and elevated activities of aspartate aminotransferase, alanine aminotransferase, creatine kinase and alkaline phosphatase were established. The most pronounced changes were noted in the beginning of intoxication (hours 1–3), followed by restoration of studied parameters until the 24th hour. In our country, experimental studies on the toxic effect of carbamate compounds have been carried out with chickens (Yotsev et al., 1997), but there are no data for the effects of carbamate insecticide carbofuran in wild birds, which are the commonest victims of intoxications in the nature.

The reported data and the increasing incidence of large-scale intoxications of wild birds with carbamate pesticides at national and global scale were the incentive of the present study on clinical signs and changes in some haematological parameters in quails with experimental acute intoxication with the carbamate insecticide carbofuran (Carbosan 35 ST).
Material and methods

Experimental animals. The experiments were carried out in 2016 with 30 female quails (Coturnix coturnix) with uniform gender, age 10–12 weeks and weight from 100 to 120 g. They originated and were kept in Stará Zagora City Zoo. One month before the trial, the birds were housed under uniform conditions compliant with hygienic norms. All quails were fed a ration corresponding to their species and age, and had free access to drinking water.

Tested substance. The experimental intoxication was provoked with carbofuran (Carbosan 35 ST, Agro Science – USA), containing 350 mg 2, 3-dihydro-2, 2-dimethyl-7-benzofuranyl methyl carbamate in 1 mL, with oral L50 for albino rats = 10.5 mg/kg. The preparation was applied once orally via an oesophageal probe, two hours before feeding (at 6.00 AM).

Experimental design. Quails were divided into 5 groups: one control and 4 experimental (6 birds in each). They were treated on hour 0 with different single doses of the tested pesticide: 1.05 mg/kg (experimental group I), 2.1 mg/kg (experimental group II), 5.25 mg/kg (experimental group III) and 10.5 mg/kg (experimental group IV), corresponding to 1/10 L50, 1/5 L50, 1/2 L50 and L50 oral doses for albino rats, respectively.

The complete clinical status included rectal body temperature (by a digital thermometer GT 2038 Geratherm Medical, Germany), defecation, locomotion and perception (using routine clinical examination). The described clinical signs were observed from 100 to 120 g. They originated and were kept in Stará Zagora City Zoo. One month before the trial, the birds were housed under uniform conditions compliant with hygienic norms. All quails were fed a ration corresponding to their species and age, and had free access to drinking water.

Tested substance. The experimental intoxication was provoked with carbofuran (Carbosan 35 ST, Agro Science – USA), containing 350 mg 2, 3-dihydro-2, 2-dimethyl-7-benzofuranyl methyl carbamate in 1 mL, with oral L50 for albino rats = 10.5 mg/kg. The preparation was applied once orally via an oesophageal probe, two hours before feeding (at 6.00 AM).

Experimental design. Quails were divided into 5 groups: one control and 4 experimental (6 birds in each). They were treated on hour 0 with different single doses of the tested pesticide: 1.05 mg/kg (experimental group I), 2.1 mg/kg (experimental group II), 5.25 mg/kg (experimental group III) and 10.5 mg/kg (experimental group IV), corresponding to 1/10 L50, 1/5 L50, 1/2 L50 and L50 oral doses for albino rats, respectively.

The complete clinical status included rectal body temperature (by a digital thermometer GT 2038 Geratherm Medical, Germany), defecation, locomotion and perception (using routine clinical diagnostic approaches) was monitored in all groups of quails three days before the treatment (hours –48, –24 and 0) and on post treatment hours 1, 3, 5, 7, 24 and 48. Blood was sampled from v. subcutanea ulnaris or v. metarsea for analysis of haemoglobin content on an automated analyser (Cell dyn 4500, USA).

All results were processed with statistical software (Statistica 6.0 for Windows, Stat Soft Inc. USA, 1993). The significance of differences between treated groups and untreated controls were evaluated by ANOVA. The level of statistical significance was p<0.05.

Results

The clinical examinations performed to establish the general tolerance of quails to carbofuran showed that the preparation was not toxic at a dose of 1.05 mg/kg (1/10 L50) for albino rats (experimental group I). The treated animals did not exhibit any signs of intoxication.

Observed clinical changes in birds treated at doses of 2.1 mg/kg (1/5 L50), (experimental group II), 5.25 mg/kg (1/2 L50), (experimental group III) and 10.5 mg/kg (L50), (experimental group IV) were of similar magnitude and time course. All treated birds showed arexia, difficulty in focusing the eyes, moderate salivation, diarrhoea, tremor and clonic tonic spasms (especially of cervical muscles). These signs appeared about the 1st hour after the treatment and lasted until the 3rd hour, thereafter become weaker and disappeared until the 5th hour. On the basis of data, it could be assumed that the dose of 2.1 mg/kg (1/10 L50) for albino rats was the minimum toxic dose of carbofuran for quails.

Birds which received single doses of 5.25 mg/kg (1/2 L50) (experimental group III) showed clinical signs of intoxication as early as the 15th minute and manifested depression, salivation with thick saliva discharge. Between the 20th and 40th minute, bowel incontinence occurred. Between post treatment minutes 45 and 60, nervous signs – generalised tremor, clonic tonic spasms and convulsions appeared. The described clinical signs were observed with decreasing intensity until the 5th hour after the challenge, and until the 7th hour the animals restored their physiological activity.

All animals treated at 10.5 mg/kg (L50) (experimental group IV) showed signs of intoxication after the 5th minute, similar to those observed with lower doses. All treated birds overcome the intoxication after the 7th hour.

The values of rectal body temperature (RT) (Figure 1) increased after the introduction of the preparation. The highest values in birds from groups II to IV were registered by the 1st hour 41.6±0.3 °C (p<0.01), 42.0±0.2 °C (p<0.01) and 42.3±0.3 °C (p<0.001) vs controls (40.5±0.3 °C), respectively. Except for group II, the fever was preserved by the 4th hour as well. By the 5th hour, the clinical parameter has returned to its normal values.

The amount of haemoglobin (Hgb) prior to and after treatment of quails is presented on Figure 2. After intoxication with carbofuran Hgb decreased, and this was expressed between the 5th and 7th hours in group II, most obviously by the 5th hour 165±14.3 gl
alternating discharge, tremor (Goad et al., 2004). Returned to its normal values. The fever was probably associated to hour and within hours 45. Exposed established in previous studies of ours 10.5 mg/kg, quails we assumed that the tolerable dose for this species was 1.05 mg/kg. The treated birds did not exhibit clinical signs of intoxication, hence The studied intoxication were comparable to those reported by Brasel (2007), Modra and Svobodova (2009) and Tall et al. (2010) in spontaneous intoxication of wild birds with carbamate insecticides. The study carried out to establish the total tolerance to carbofuran showed that the preparation was not toxic for quails at a dose of 1.05 mg/kg (1/10 LD₅₀ for albino rats) (experimental group I). The treated birds did not exhibit clinical signs of intoxication, hence we assumed that the tolerable dose for this species was 1.05 mg/kg.

According to our study, clinical signs of intoxications appeared between the 1st and the 3rd hour in birds from experimental group II, treated with 2.1 mg/kg carbofuran, i.e. 1/5 LD₅₀. These data allowed assuming that this was the minimum toxic dose of the preparation for quails.

With regard to the species-specific susceptibility to the tested carbamate insecticide, the tolerable and minimum toxic dose for dogs treated with similar doses of carbofuran (Binev et al., 2014a), were twice lower.

Our experiments showed also that the minimum lethal dose was 10.5 mg/kg, equal to LD₅₀ for albino rats as well as that it was twice higher than that for dogs (5.25 mg/kg ½ LD₅₀ for albino rats) established in previous studies of ours (Binev et al., 2014a). All dogs exposed to 10.5 mg/kg (LD₅₀ for albino rats) died between the 30th and 45th minute (Binev et al., 2014a). Clinical intoxication with carbofuran in quails from experimental group IV (treated with 10.5 mg/kg) occurred about post treatment min 15-30, with most obvious signs by post treatment hour 1.

The body temperature curve in experimental group I showed that low doses of carbofuran (1/10 LD₅₀) did not influence it. As doses increased, it also went higher with peak values detected by the 1st hour and within hours 35, then the studied clinical parameter returned to its normal values. The fever was probably associated to enhanced general metabolism by the exposure to carbamate pesticides (Kim et al., 2004). From the other hand, thermoregulation could be impaired by the neurotoxic effects of these compounds (Goed et al., 2004).

Changes in the behaviour and general condition observed by us and others (Tall et al., 2010): arexia, anxiety, diarrhoea, polydipsia, tremor, clonic tonic spasms, depression, salivation with thick saliva discharge, miosis, impaired locomotor coordination, inability to stand, failling, incontinence, generalised tremor, convulsions, movement within a circle, paresis and paralysis of extremities alternating with depression and somnolence, turning of the head, spasms, delayed reflexes and sensitivity, are due to irritation of cholinergic receptors by increased acetylcholine which caused the observed neurotoxic symptoms (Modra and Svobodova, 2009).

In the course of acute carbofuran intoxication, the amount of haemoglobin in treated groups of quails was also altered. After the treatment, haemoglobin content decreased proportionally to the increase of the dose. Maximum hypochromaemia was present one hour after the exposure.

Hypochromaemia in experimental groups were due, from one hand, to multiple haemorrhages on parenchymal organs established in gross anatomy and other studies (Rizos et al., 2004; Guitart et al., 2010a). On the other hand, the reduced haemoglobin was associated to lower red blood cell counts due to depletion of liver glutathione (GSH) which prevents their haemolysis (Adhikari et al., 2004). A third possible mechanism of hypochromaemia is hypoxaemia-stimulated vasconstriction with release of catecholamines, leading to redistribution in blood composition manifested by leukocytosis and erythroplaenia. The intoxication with carbamate preparations and catecholamine increase is additionally due to increased cholinergic stimulation of receptors consequently to inhibited cholinesterase activity (Peranantham et al., 2014). Previous data of ours in dogs (Binev et al., 2014a) and data from other authors (Adhikari et al., 2004) reporting reduction of red blood cell counts could be assumed as a cause of observed hypochromaemia.

The results of our studies on the effects of acute carbofuran intoxication in quails differ from those of Zhelev (2004) reported in poultry and pigs. The author reported hyperhaeromaemia and erythrocritosis, correlating to increased haematocrit, although according to other authors (Zaahkouk et al., 2000) blood haemacrit was decreased consistently with hypochromaemia and erythroplaenia.

Conclusion

The study performed to evaluate the toxic effects of increasing doses of the carbamate pesticide carbofuran in quails (1/20 LD₅₀, 1/10 LD₅₀, 1/5 LD₅₀, 1/3 LD₅₀ and 1/2 LD₅₀) revealed that clinical signs of intoxication could be summarised as fever, arexia, difficulty in focusing the eyes, salivation with thick saliva discharge, diarrhoea, generalised tremor, clonic tonic spasms (especially of cervical muscles), and depression. The established hypochromaemia was also added to observed signs. The described changes were the most obvious in the beginning of intoxication (hours 1 and 3), and consequently the studied parameters regained their control values. The tolerated dose of carbofuran established in this study was 1.05 mg/kg (1/10 LD₅₀ for albino rats), the minimum toxic dose was 2.1 mg/kg (1/5 LD₅₀ for albino rats), and the minimum lethal dose - 10.5 mg/kg, equal to LD₅₀ for albino rats.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

This study was funded by project №19/2006 and was supported.
References

Binev R, Valchev I, Stoyanchev K, Mihaylov R and Nikolov Y, 2014b. Changes in blood enzyme activities after experimental acute intoxication of quails (Coturnix coturnix) with the carbamate insecticide carbofuran. Bulgarian Journal of Veterinary Medicine, 17, 331-337.

Zhelev I, 2004. Study on the acute toxicity of carbamate compound carbofuran in fattening pigs. Veterinary Medicine, 8, 43-47.
Review

Triticale – past and future
St. Dobreva

Genetics and Breeding

Productivity performance of bread winter wheat genotypes with local and foreign origin
G. Raykov, P. Chamurliyski, S. Doneva, E. Penchev, N. Tsenov

Production properties of flax (Linum usitatissimum L.) cultivated in Strumica region, Republic of Macedonia
P. Vuckov, M. Ilievski, D. Spasova, L. Mihajlov, N. Markova-Ruzdić

Quality of grain and flour of foreign bread wheat cultivars (Triticum aestivum L.) under the conditions of south Dobrudzha region
P. Chamurliyski, N. Tsenov, I. Stoeva, S. Doneva, E. Penchev

Breeding programme for developing new sweet cherry cultivars in the Fruit Growing Institute, Plovdiv, Bulgaria
S. Malchev, A. Zhivondov

Heterosis manifestations by survival and larval duration of F1 Bombyx mori L. hybrids
R. Guncheva, M. Panayotov, P. Tsenov, Y. Dimitrova

Nutrition and Physiology

Reproductive performance of breeding rabbits fed by graded levels of cassava (Manihot esculenta) leaf meal
T. Ahemen, I.I. Bitto, O.I.A. Oluremi

Clinical toxicological investigations on acute carbofuran intoxication in quails (Coturnix coturnix)
R. Binev, I. Valchev, R. Mihaylov, Y. Nikolov

Production Systems

Efficacy and timing of some new products against pear psylla (Cacopsylla pyri L.) (Hemiptera: Psyllidae): II Spirodiclofen
V. Arnaudov

Biochemical and chemical investigations of pikeperch fingerlings (Sander lucioperca L.) after wintering
A. Ivanova, R. Atanasova
Effect of fluorescence on the technological characteristics of cocoons at different cooking temperatures
M. Panayotov

Comparative analysis of plane geometric parameters of various types of cow milking parlors
D. Georgiev

Agriculture and Environment

Panthaleus major /Duges/ of cereals in Bulgaria
V. Maneva, D. Atanasova

Selectivity and stability of herbicides and their tank mixtures for the seed yield of sunflower (*Helianthus Annuus* L.)
G. Delchev, T. Barakova

Effect of green manure cover crops on tomato greenhouse production
I. Tringovska, V. Yankova, D. Markova

Reclamation of lands disturbed by mining activities in Bulgaria
I. Kirilov, M. Banov

Product Quality and Safety

Fish production and meat quality traits in rainbow trout (*Oncorhynchus mykiss*) farmed in different production systems
St. Stoyanova, Y. Staykov, G. Zelqzkov, I. Sirakov, G. Nikolov
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What is new on the studied issue? What is known and what is new on the studied issue? What is new on the studied issue? What is known and what is new on the studied issue? What is new on the studied issue? What is known and what is new on the studied issue?

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order: e.g. (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.