Scope and policy of the journal
Agricultural Science and Technology /AST/ – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This issue is printed with the financial support by Contract No DNP 05-21/20.12.2016, financed from Fund ‘Scientific Research’ grant Bulgarian scientific Periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu
Review

Antimicrobial activity of *Lactobacillus acidophilus* against pathogenic and food spoilage microorganisms: A review

1Department of Biochemistry, Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria
2Department of Applied Ecology and Animal Hygiene, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

(Manuscript received 23 November 2016; accepted for publication 17 February 2017)

Abstract. The purpose of this review is to summarize the information regarding the antimicrobial activity of *Lactobacillus acidophilus*, an important species of lactic acid bacteria. Lactic acid bacteria are constituents of many beneficent for the consumer's health food products. They are considered potentially promising in the strategy to combat infections and prevent the growth of spoilage microorganisms, and also have antimutagenic, anticarcinogenic, hypolipidemic and hypcholesterolemic properties, improve the lactose metabolism, stimulate the immune system, etc. In the recent years *Lactobacillus acidophilus* is considered the main probiotic species in the intestinal tract of healthy humans and is widely used in functional dairy foods. It produces a variety of metabolic products with antimicrobial properties, including organic acids and bacteriocins, such as lactocin B and F, acidophilin, acidocin, acidophilucin, acidophilicin, which are active against many pathogenic and spoilage microorganisms - *Escherichia coli* (including *Escherichia coli* 0157:H7), *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Listeria monocytogenes*, *Vibrio parahaemolyticus*, *Vibrio cholerae*, *Helicobacter pylori*, *Clostridium*, *Mucor*, *Aspergillus*, *Fusarium*, *Trichoderma* and *Candida* spp., etc. Because of the above mentioned reasons *Lactobacillus acidophilus* could be used as an alternative therapeutic agent against infections caused by susceptible microorganisms. On the other hand *Lactobacillus acidophilus* based antimicrobial products (mainly bacteriocins and pure cultures) could also be applied to food products to prevent the growth of spoilage microorganisms and food-borne pathogens. To better understand the mode of action and the spectrum of antifungal activity more clinical and laboratory studies of different *Lactobacillus acidophilus* strains are required.

Keywords: *Lactobacillus acidophilus*, antimicrobial activity, spoilage microorganisms, pathogens

Introduction

In modern society there is increasing demand for safe foods and high quality preservative-free products. On the other hand, the food-borne diseases are major cause for morbidity and mortality in the population of the world. Most of the deaths occur in developing and tropical countries, although they are not limited to them (Arias et al., 2013). To meet the demands of food industry and to restrict the occurrence of the food-borne diseases lactic acid bacteria (LAB) and LAB-produced bacteriocins are often used (Vignolo et al., 2012). LAB consist of a few genera, which include *Streptococcus*, *Enterococcus*, *Lactococcus*, *Leuconostoc*, *Lactobacillus* and *Pedococcus*. Based on similarities in physiology, metabolism and nutritional needs, these genera are grouped together. The primary similarity is that all members produce lactic acid as a main end product of the carbohydrates fermentation. LAB are considered as a good choice to prevent the growth of spoilage and pathogenic microorganisms (Al-Chezzy et al., 2011). They are the most widely used bacteria as starter cultures for the industrial processing of fermented dairy, meat, vegetable and cereal products. Reduction of pH and conversion of sugars to organic acids are the main mechanisms for biopreservation of fermented foods (Vignolo et al., 2012).

Because of the irresponsible use of antibiotics to treat human and animal infections some bacteria have developed resistances (Besler and Essack, 2010). In order to avoid the frequent use of antibiotics and to control the rate of proliferation of potentially pathogenic gastrointestinal bacteria, probiotics could be successfully employed (Arias et al., 2013). LAB produced antimicrobials have been successfully used to prevent the formation of biogenic amines (Joosten and Nunez, 1996) and they also have the ability to inhibit mastitis pathogens (Ryan et al., 1998), food-borne pathogens (Abo-Amer, 2013), fungal pathogens (Demkova et al., 2013; De Seta et al., 2014) and the growth of *Helicobacter pylori* (Michetti et al., 1999). Recently some LAB strains have been successfully applied in human medicine for the treatment of various chronic and cardiovascular diseases such as Parkinson’s, Alzheimer’s, diabetes, obesity, urogenital complications, cancer, hypertension, liver disorders, etc. (Woo et al., 2014).

Lactobacillus acidophilus (*L. acidophilus*) is considered the predominant *Lactobacillus* species in the intestinal tract of healthy humans (Ray, 1996). Among the different *Lactobacillus* species *L. acidophilus* strains are most frequently used as probiotics (Klaenhammer and Kullen, 1999). *L. acidophilus* is often resistant to routinely used antibiotics. This resistance is often intrinsic and non-transmissible. Sometimes however, inherently antibiotic-resistant probiotic strains may benefit patients whose normal intestinal microbiota is unbalanced or greatly reduced in numbers due to the application of various antimicrobials (Emami and Bazargani, 2014). Because of its many beneficial properties *L. acidophilus* is widely...
used as a starter culture in fermented dairy products (Ahmed et al., 2010).

Considering the increasing significance of the LAB as antibiotics alternative, the knowledge of the antimicrobial activity of the main LAB species and *L. acidophilus* in particular has especially high importance. The antimicrobial activity of *L. acidophilus* can give us a lead if the corresponding *L. acidophilus* products can be helpful in the treatment of the particular infection. Also, because the main food-borne pathogens and food spoilage microorganisms are already well-known, the supplementation of *L. acidophilus* to the food could be made on the basis of the antimicrobial activity of the particular *L. acidophilus* strain. Thus, the purpose of this review is to summarize the information regarding the antimicrobial activity of *Lactobacillus acidophilus*, which could be useful in medical practice and food industry.

Antimicrobial substances produced by *L. acidophilus*

Bacteriocins

Bacteriocins are ribosomally synthesized antimicrobial peptides produced by a variety of bacteria, including LAB. Some of them have considerable potential in food preservation and can greatly reduce or eliminate the necessity for addition of chemical preservatives or the intensity of processing the food and in that way can satisfy the consumer demand of safe and high-quality food products (Perez et al., 2014). Most of the bacteriocins kill the susceptible bacteria by membrane permeabilization or by interactions with essential enzymes (Wen et al., 2016). Moreover, bacteriocins are degraded by the proteolytic enzymes of the gastrointestinal tract and seems to be non-toxic and non-antigenic to animals and humans (Amenu, 2013). According to Zacharof and Lovitt (2012) the LAB bacteriocins are classified into 3 major classes: (1) Class I (the lantibiotics); (2) class II (the non-lantabiotics); and (3) Class III (bacteriocins).

L. acidophilus-produced bacteriocins are lactacin B, F; acidophilin 801; acidocin A, B, 1B, CH5, J1229, J132, 8912, LF221 A, LF221 B, D20079; acidophilinic A; acidophilin LA-1 (Ahmed et al., 2010). Barefoot and Klænhammer (1983) conducted the first study on the production of bacteriocins by *L. acidophilus*. They named the first bacteriocin lactacin B. It has narrow spectrum of activity against selected members of *Lactobacillaceae* family. The following studies found many bacteriocins with considerably broader spectrum of activity against food spoilage and pathogenic bacteria, such as acidocin 1B, CH5, D20079, LF221 A, LF221 B, etc. (Ahmed et al., 2010). Some bacteriocins, such as acidocin CH5 and acidocin D20079 could be used in fermented milk or meat products, respectively to inhibit the growth of the food spoilage bacteria (Collins and Aramaki, 2001). Gerez et al. (2013) reported that *L. acidophilus* strains can produce hydrogen peroxide in sufficient concentrations to inhibit the growth of some food spoilage bacteria (Collins and Aramaki, 2001). Gerez et al. (2013) reported that *L. acidophilus* strains can produce hydrogen peroxide in sufficient concentrations to inhibit the growth of some food spoilage bacteria (Collins and Aramaki, 2001).

Organic acids

Organic acids lower the local pH and therefore inhibit the growth of bacteria (especially Gram-negative bacteria) sensitive to acidic conditions (Makras and De Vuyst, 2006). Many experiments showed that organic acids are one of the main LAB compounds exerting antimicrobial effects (Piper et al., 2001; De Muynck et al., 2004; Denkova et al., 2013; Gerez et al., 2013). Because *L. acidophilus* belongs to the homofermentative *Lactobacillus* species it is fermenting carbohydrates mainly into lactic acid. During LAB fermentation lactic acid is in equilibrium between its undissociated and dissociated forms, and the extent of the dissociation depends on pH. At low pH, a large amount of lactic acid is in undissociated form and it is toxic to many bacteria, fungi and yeasts. However, different microorganisms vary significantly in their sensitivity to lactic acid. At pH 5.0 lactic acid is inhibitory towards spore-forming bacteria but is ineffective against yeasts and moulds (Amenu, 2013).

Benzonic acid is the most commonly applied preservative in the food industry. It is used primarily as antifungal agent. Dairy products can contain natural benzoic acid as some LAB could transform some acids naturally present in milk into benzoic acid. Some authors found strains of *L. acidophilus* that can produce benzoic acid in fermented milk (Reis et al., 2012).

Hydroxy fatty acids

The antifungal effects of the 3-hydroxy fatty acids are due to detergent-like properties of the compounds that alter cellular membrane structure in the target organisms (Sjögren et al., 2003). There are some studies on LAB-produced fatty acids that have a broad spectrum of antifungal activity (Sjögren et al., 2003; Dalé et al., 2010). Recently Hirata et al. (2015) reported that *L. acidophilus* NTV001 has the ability to convert linoleic acid to hydroxy fatty acids through production of fatty acids hydratase.

Hydrogen peroxide

Hydrogen peroxide is produced by LAB in the presence of oxygen as a result of the action of flavoprotein oxidases or NADH peroxidase. The antimicrobial effect of hydrogen peroxide could result from the oxidation of sulfhydryl groups which cause denaturation of a variety of enzymes and from the peroxidation of membrane lipids that leads to increased membrane permeability (Amenu, 2013). Hydrogen peroxide can be a precursor for the synthesis of bactericidal free radicals such as superoxide (O2-) and hydroxyl radicals (OH) which can damage DNA (Byczkowski and Gessner, 1988). It is well known that in certain conditions some *L. acidophilus* strains can produce hydrogen peroxide in sufficient concentrations to inhibit the growth of some food spoilage bacteria (Collins and Aramaki, 2001). Gerez et al. (2013) reported that hydrogen peroxide does not exert any antifungal activity.

Antimicrobial activity of *L. acidophilus*

Antibacterial activity

Experimental data show that *L. acidophilus* is active against many Gram-negative pathogenic and food spoilage microorganisms - *Escherichia coli* (including multidrug-resistant enterogastric *Escherichia coli* and *E. coli* 0157:H7), *Pseudomonas aeruginosa*, *Klebsiella*, *Salmonella*, *Shigella* spp., etc. (Table 1). *L. acidophilus* exerts antibacterial activity also against a variety of Gram-positive bacteria, including important pathogens - *Bacillus cereus*, *Bacillus subtilis*, *Clostridium perfringens*, *Staphylococcus aureus* and *Listeria monocytogenes* (Table 2). It is important to emphasize that the antimicrobial activity of *L. acidophilus* (and the other LAB) is strain specific and not species- or genus specific (Deney et al., 2015). That means there are only some *L. acidophilus* strains that inhibit specific strains of the aforementioned bacteria. There are three mechanisms that could explain the antimicrobial efficacy of LAB and *L. acidophilus* in particular: 1) the production of bacteriocins; 2) the yield of organic acids and some other inhibitory substances such as hydroxy fatty acids and hydrogen peroxide; 3) and the competition for nutrients (Magnusson et al., 2003).
It is well established that Gram-negative bacteria are intrinsically resistant to bacteriocins produced by LAB and
L. acidophilus in particular. This occurs due to the presence of the external membrane, which constitutes a physical barrier to the passage and binding of bacteriocins (Pehrson et al., 2015). However, it has been reported that the destabilization of the outer membrane could make Gram-negative bacteria susceptible to bacteriocins. It is found that lactic acid acts as a permeabilizer of the outer membrane of Gram-negative bacteria, thus increasing their susceptibility to antimicrobials (including bacteriocins), allowing their molecules to penetrate the bacteria (Alakomi et al., 2000). Initially most of the reports revealed that the bacteriocins were active against narrow spectrum of Gram-positive bacteria (mainly *Lactobacillus* spp.), but in the following years some authors also reported activity against Gram-negative bacteria from *Enterobacteriaceae* (Ahmed et al., 2010).

Regarding the antibacterial activity of *L. acidophilus*-produced substances it is considered that organic acids exert a strong inhibition effect on Gram-negative bacteria (Makras and De Vuyst, 2006). The probiotic-mediated inhibitory activity on *Escherichia coli* and *Salmonella enteritidis* increased proportionally to the concentration of organic acids in the medium. The authors observed that the low pH may not be the only cause for the observed inhibition effects. This however could be an important condition for the passage of organic acids through the membrane to the intracellular environment, where they will accumulate and exert inhibitory activity.

Table 1. Antimicrobial activity of *L. acidophilus* strains against Gram-negative bacteria

<table>
<thead>
<tr>
<th>Spectrum of L. acidophilus activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromonas spp.</td>
<td>Al-Chezzy et al. (2011)</td>
</tr>
<tr>
<td>A. hydrophila</td>
<td>Aly et al. (2008)</td>
</tr>
<tr>
<td>Bacteroides thetaiotaomicron</td>
<td>Dubourg et al. (2015)</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>Coconnier et al. (1997)</td>
</tr>
<tr>
<td>E. aerogenes</td>
<td>Aween et al. (2012)</td>
</tr>
<tr>
<td>E. cloacae</td>
<td>Karaoğlu et al. (2003)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Coconnier et al. (1997); Demblé et al. (1998); Ogawa et al. (2001); Klewicka and Libudzisz (2004); Abo-Amer (2006); Ogunshe et al. (2007); Ogunbanwo and Okanlawon (2008); Medellin-Peña and Griffiths (2009); Wang et al. (2010); Omem and Faniran (2011); Nigam et al. (2012); Al-Chezzy et al. (2011); Aween et al. (2012); Elamathy and Kanchana (2013); Pyar et al. (2013); Bharal and Sohpal (2013); Dixit et al. (2013); Pehrson et al. (2013); Arias et al. (2013); Abo-Amer (2013); El-Kholy et al. (2014); Emami and Bazargani (2014); Venkadesan and Sumathi (2015); Saad et al. (2015); Kumar et al. (2016)</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Michetti et al. (1999)</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>Al-Chezzy et al. (2011); Elamathy and Kanchana (2013)</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>Coconnier et al. (1997); Ogunshe et al. (2007); Omem and Faniran (2011); Dixit et al. (2013); Emami and Bazargani (2014)</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>Al-Chezzy et al. (2011)</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Coconnier et al. (1997); Karaoğlu et al. (2003); Klewicka and Libudzisz (2004); Ogunshe et al. (2007); Nigam et al. (2012); Bharal and Sohpal (2013); Dixit et al. (2013); Abo-Amer (2013); Emami and Bazargani (2014)</td>
</tr>
<tr>
<td>P. fluorescens</td>
<td>Klewicka and Libudzisz (2004); Aly et al. (2008)</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>Al-Chezzy et al. (2011); Salleh et al. (2014)</td>
</tr>
<tr>
<td>S. choleraesuis</td>
<td>Lin et al. (2008)</td>
</tr>
<tr>
<td>S. enteritidis</td>
<td>Pehrson et al. (2013)</td>
</tr>
<tr>
<td>S. paratyphi</td>
<td>Abo-Amer (2006); Abo-Amer (2013)</td>
</tr>
<tr>
<td>S. typhi</td>
<td>Bharal and Sohpal (2013); Venkadesan and Sumathi (2015); Dixit et al. (2013)</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>Coconnier et al. (1997); Aween et al. (2012); Arias et al. (2013); Abo-Amer (2013)</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>Coconnier et al. (1997)</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>Pehrson et al. (2013); Abo-Amer (2006); Abo-Amer (2013)</td>
</tr>
<tr>
<td>Vibrio parahaemolyticus</td>
<td>Wang et al. (2010)</td>
</tr>
<tr>
<td>V. cholerae serotype Inaba</td>
<td>Wang et al. (2010)</td>
</tr>
</tbody>
</table>
(Fooks and Gibson, 2002).

Because some *L. acidophilus* strains were effective against meticillin-resistant *Staphylococcus aureus* and multidrug-resistant enterococcal *Escherichia coli*, they can serve as alternative therapeutic agents against the specific infections (Karska-Wysocki et al., 1998; Kumar et al., 2016). It has been reported that *L. acidophilus* reduce the levels of harmful bacteria and yeasts in the small intestine and the toxic amines in the blood of dialysis patients with small bowel bacterial overgrowth (Sanders and Klaenhammer, 2001).

Antifungal activity

Researches on that aspect show that *L. acidophilus* is active against a variety of pathogenic and food spoilage moulds and yeasts - *Aspergillus*, *Fusarium*, *Mucor*, *Trichoderma*, *Candida* spp., etc. (Table 3). Some authors attributed the antifungal activity of LAB on the metabolic activity of acidification of the cytoplasm, which affects the proton motive force of the membrane, thus directly inhibiting fungal growth (Piper et al., 2001). De Muynck et al. (2004) pointed out that the excellent antifungal effect of *L. acidophilus* LMG 9433 is probably due to either organic acids or other pH-dependent antifungal compounds. Gerez et al. (2013) also found that the main metabolites are the organic acids – lactic, acetic and phenyllactic. Other authors confirmed that *L. acidophilus* exerts a biostatic effect on the fungal growth due to the accumulation of organic acids (Denkova et al., 2013). De Muynck et al. (2004) pointed out that the excellent antifungal effect of *L. acidophilus* LMG 9433 is probably due to either organic acids or other pH-dependent antifungal compounds. Gerez et al. (2013) also found that the main metabolites are the organic acids – lactic, acetic and phenyllactic. Other authors confirmed that *L. acidophilus* exerts a biostatic effect on the fungal growth due to the accumulation of organic acids (Denkova et al., 2013).

Table 3. Antifungal activity of *Lactobacillus acidophilus* strains against *Aspergillus*

|-------------------------------------|---------------|-----------|-----------------|------------|----------------------|---------------------|---------------------|---------------------|-------------|------------|-----------------|-----------------|----------------|-----------|-------------------|----------|----------------|-----------------|-----------|-----------|-----------|

References

References
spoilage factors the use of antifungal LAB as biopreservatives is very promising (Schnürer and Magnusson, 2005). However, to avoid ambiguities considering the antifungal activity of L. acidophilus more studies of this probiotic bacteria are needed.

Conclusion

The literature review on the problem showed that L. acidophilus could be used as a biocontrol agent in the gastrointestinal ecosystem of humans and animals, because of the broad spectrum of antimicrobial activity against many pathogens. The supplementation of L. acidophilus strains or its bacteriocins (lactacin B and F; acidophilin 801; acidocin A, B, 1B, CH5, Jl32, 8912, LF221 A, LF221 B and D20079; acidophilicin A; acidophilicin LA-1) to many food products could be done to prevent the growth of certain undesirable bacteria and fungi. To better understand the mode of action and the possible applications of L. acidophilus against pathogenic and food spoilage fungi more clinical and laboratory studies of different strains are required.

References

Aly S, Ahmed Y, Ghareeb A and Mohamed M, 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish and Shellfish Immunology, 25, 128-136.

Lin C-K, Tsai H-C, Lin P-P, Tsen H-Y and Tsai C-C, 2008. Lactobacillus acidophilus LAP5 able to inhibit the Salmonella choleraesuis invasion to the human Caco-2 epithelial cell. Anaerobe, 14, 251-255.

8
Review

Antimicrobial activity of *Lactobacillus acidophilus* against pathogenic and food spoilage microorganisms: A review
T. Dinev, G. Beev, S. Denev, D. Dermendzhieva, M. Tzanova, E. Valkova

Genetics and Breeding

Heterosis and degrees of dominance of grain yield and grain yield elements in maize hybrids in different groups of ripeness
M. Ilchovska

Use of recurrent selection of early flowering in late maize synthetic population. Results of second cycle of breeding.
N. Petrovska, V. Valkova

Productivity and adaptability of new genotypes field pea (*Pisum sativum* L.) cultivated under environmental condition of Southern Romania
R. Sturzu, A. M. Ene, Cr. Melucă, J. M. Cojocaru

Nitrogen uptake and expense in durum wheat depending on genotype and nitrogen fertilization
G. Panayotova, M. Almaliev, S. Kostadinova

Nutrition and Physiology

Haematological investigations upon acute intoxication with carbofuran in dogs
R. Binev, I. Valchev, R. Russenov, Y. Nikolov

Production Systems

Phytosanitary status and yield of kamut (*Triticum turgidum polonicum* L.) grown in organic and biodynamic farming
V. Maneva, D. Atanasova, T. Nedelcheva

Hot-water treatment of gladiolus cormels for control of corm-borne fungal diseases
S. Bistrichanov, T. Vatchev, Z. Avramov

Productivity of common wheat (*Triticum aestivum* L.) grown after various predecessors and nitrogen fertilization rates
M. Gerdzhikova

Agriculture and Environment

Agro-ecological assessment of manure from different farm animals by content of biogenic elements
D. Dermendzhieva, G. Kostadinova, G. Petkov, D. Dimov, T. Dinev, T. Penev, Ch. Miteva, J. Mitev
Screening of cucurbitaceous rootstocks against root-knot nematodes \textit{(Meloidogyne spp.)} and soilborne pathogens \textit{(Fusarium spp. and Pythium spp.)}
V. Yankova, D. Markova, N. Velkov, S. Masheva

Animal hygiene assessment of microclimate in semi open free-stall barns for dairy cows
D. Dimov, Ch. Miteva, I. Marinov, Zh. Gergovska, T. Penev, A. Enchev

Product Quality and Safety

Accumulation of astaxanthin and canthaxanthin in muscle tissues of Rainbow trout \textit{(Oncorhynchus mykiss W.)} fed with xanthophyll supplemented feed
M. Tzanova

Chemical composition and technological characteristics of wines from red grape varieties, selected in Bulgaria
V. Haygarov, T. Yoncheva, Z. Nakov, M. Ivanov, D. Dimitrov
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. **Tables** should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Thesis:

Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Todorov N and Mitev J. 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IX International Conference on Production Diseases in Farm Animals, September 11–14, Berlin, Germany.
