AGRICULTURAL
SCIENCE AND TECHNOLOGY

2017

An International Journal Published by Faculty of Agriculture, Trakia University, Stara Zagora, Bulgaria
Editor-in-Chief
Georgi Petkov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria
E-mail: gpetkov@af.uni.sz.bg

Co-Editor-in-Chief
Dimitar Panayotov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections

Genetics and Breeding
Tsanku Yablanski (Bulgaria)
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothachel (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Stoicho Metodiev (Bulgaria)
Bojin Bojinov (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Ivan Varlyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)
Roumiana Tsenkova (Japan)

English Editor
Yanka Ivanova (Bulgaria)

Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines.

The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters). The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

This issue is printed with the financial support by Contract No DNP 05-21/20.12.2016, financed from Fund ‘Scientific Research’ grant Bulgarian scientific Periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student’s campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu
Use of recurrent selection of early flowering in late maize synthetic population. Results of second cycle of breeding

N. Petrovska*, V. Valkova

Maize Research Institute, 5835 Knezha, Bulgaria

(Manuscript received 10 June 2016; accepted for publication 28 September 2016)

Abstract. During the period 2012 – 2014, a second cycle of recurrent selection of early flowering in a synthetic maize population “Exotic-07” was conducted and finished on the experimental field of Maize Research Institute – Knezha. The experiments are carried out by a block method, on a test plot of 10 m², with three replications, and the respective for the region agricultural equipment. Twenty-three progeny from the first and second cycle, the source and improved exotic maize populations, as well as their testcrosses with the lines XM 4416 and PAU 1617 are tested. A phenotypic cycle assumes a leading position in terms of dates of plant silking as the forms of the earliest flowering are used as pollen in the population. The selected early flowering forms are sown for inbreeding and forming an improved maize population. As a direct result of the work of improvement, progeny with a period of days until silking averagely shorter with 5 days and grain moisture lowered by 1.1% are obtained. The aim of this study is to point out inbred lines with a shorter vegetative period and use them as parental forms for obtaining high-yielding mid-late maize hybrids.

Keywords: synthetic maize population, recurrent selection, days till silking

Introduction

According to a number of researches, the exotic populations of the late maturity group are more adaptive to various agroclimatic conditions and the hybrids obtained by such populations follow the tendencies of early maturation and a vegetative period that is a few days shorter than the parental forms. The inclusion of late synthetics in programs of recurrent selection for shortening the vegetative period allows the creation of earlier materials which carry the favourable of the late populations in terms of productivity (Hallauer, 1972, 1991; Troyer and Larkins, 1985; Vales, 2001; Suprunov et al., 2013).

After a phenotypic cycle of early flowering is conducted, donors of early maturity and a change of the continuation of the separate stages of maize development are obtained (Lemeshtenko and Suprunov, 2012). Synthetics from the collection of the State University – Iowa are introduced and multiplied in the Maize Research Institute, Knezha, after which they are included in various breeding programs (Genova, 1988). Later Petrov (1997) establishes a good plasticity of exotic populations from CIMMYT under the conditions of Central North Bulgaria. The direct use of synthetic populations is inadvisable due to their relatively low productivity, but as a source material, they prove to be one of the most valuable sources. On the one hand, they constitute stable ecosystems of higher plasticity in terms of mutable and stressful conditions. On the other hand, their wide genetic bases and high genetic variability allow an effective cycle in terms of properties and indices (Mitev, 1995, 1998).

The current study shows the results of a second cycle of breeding of a recurrent selection of early maturity in a late exotic maize population, with the aim of pointing out inbred lines with a shorter vegetative period and using them as parental forms for obtaining high-yielding mid-late hybrids.

Material and methods

A late synthetic maize population “Exotic-07”, group by FAO above 600, has been included in the research. The line was created in 2007 and encompasses 11 inbred lines of exotic origin that have been selected after an analysis of yield stability of testcrosses in the source population Exotic was conducted. The level of stability has been defined by means of an index of stability – Y by Kang (1993) and it is an object of study of a previous publication (Dimova et al., 2014). The data on the origin, productivity, improved selection and testing of the source population, that have been used for the current study, are an object of a previous study as well (Genov et al., 2006).

Synthetic, E-07* – Cm, Cc, and Cc*, source and improved maize populations, obtained by the method of recurrent selection of an early flowering by Hayes and Garber (1919) were included in a research during 2012 – 2014. In 2012, 2400 plants were sown in terms of higher for the maturity group density (8 000 plants/ha). Thirty-five of the earliest flowering plants were pollinated with mixed pollen. The progeny of twenty-one of them were selected in the next year by the ear-row method for a new cycle and a chain re-pollination. In 2014 on an experimental field in the Maize Research Institute, Knezha, twenty-three progeny from the first and second cycle, source and improved exotic maize populations were tested by a block method, on a test plot of 10 m², with three replications. Parallel to the testing, thirty plants from the stock of the selected early flowering forms were sown for inbreeding.

A phenotypic cycle assumes a leading position in terms of dates of plant silking as the forms of the earliest flowering are used as pollen in the population. The date of the silking is defined by the emergence of silk of 75% of the plants in the replications and the grain moisture at harvest is calculated by an electronic hygrometer.

*e-mail: natalya_hristova@abv.bg
Results and discussion

Table 1 shows results of testing the improved maize population compared to the source population and the first cycle of recurrent selection. The period growing-silking has been defined as the days until the flowering of the reproductive organs is an index of high inheritability and is directly linked to the length of the vegetative period.

Thus, it becomes evident that the progeny of the improved population have a shorter vegetative period and lower grain moisture at harvest. Sixteen of the progeny have a period of growing-silking from 52 to 55 days and the grain moisture is from 14 to 15.3%.

As a result of the recurrent selection of early flowering, the progeny in the new population tend to silk within a period shorter by 5 days on average than the source population and the grain moisture is lowered by 1.1%. In some progeny the period until silking was defined to be 52 days and grain moisture – lowered to 14.0%. In the source population some of the variants reach a period of growing-silking of 71-72 days and the grain moisture is shown to be 29.2%. The best results are displayed by the variants E2-14, E2-19, E2-9, E2-1 and E2-7 from a second cycle of breeding and their grain moisture at harvest is 14.0 to 14.9%, respectively, and the period until silking – 55 days. Lines from the stock of these three progeny were selected for inbreeding, recurrent selection and testing. They can be used as donors of early maturity and drought-resistance in other selection programs in this direction as they carry the favourable alleles for productivity of late maize, while they follow tendencies of early maturity and shortening of the vegetative period. Furthermore, for the aims of practical selection the obtained inbred lines are valuable material for direct heterosis work and their use as parental components in forming mid-late maize hybrids with a high tempo of giving off grain moisture at harvest is recommended.

Figure 1 graphically represents the results of the testing of the source and improved synthetic population in terms of vegetative period and grain moisture at harvest. Drawing upon such an outcome, their stock will be used for forming a new cycle of breeding. The index of variation (CV%) in terms of vegetative period in the improved maize population is almost preserved within the same boundaries, at the expense of the highly lowered variability of the grain moisture index.

The low grain moisture that has been pointed out by the testing of the improved population, its lowering as well as the short vegetative period show that the inclusion of late synthetics into programs of recurrent selection of early flowering leads to a shortening of the vegetative period and subsequent lowering of grain moisture. The results confirm the previous researches of the two-sided improvement of the synthetic population in a breeding of early flowering.

Table 1. Results from testing of improved maize population year 2014

<table>
<thead>
<tr>
<th>Self-pollinated progenies of synthetic E07-C1</th>
<th>Vegetation period (days till silking)</th>
<th>Moisture E07-C1 (%)</th>
<th>Self-pollinated progenies of synthetic E07-C2</th>
<th>Vegetation period (days till silking)</th>
<th>Moisture E07-C2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 1/1</td>
<td>67</td>
<td>19.5</td>
<td>E2/1</td>
<td>55</td>
<td>14.8</td>
</tr>
<tr>
<td>E 1/4</td>
<td>69</td>
<td>19.6</td>
<td>E2/2</td>
<td>53</td>
<td>15.6</td>
</tr>
<tr>
<td>E 1/5</td>
<td>68</td>
<td>19.4</td>
<td>E2/4</td>
<td>53</td>
<td>15.4</td>
</tr>
<tr>
<td>E 1/6</td>
<td>67</td>
<td>19.5</td>
<td>E2/6</td>
<td>55</td>
<td>16.6</td>
</tr>
<tr>
<td>E 1/7</td>
<td>65</td>
<td>19.6</td>
<td>E2/7</td>
<td>57</td>
<td>14.9</td>
</tr>
<tr>
<td>E 1/10</td>
<td>68</td>
<td>19.5</td>
<td>E2/8</td>
<td>57</td>
<td>17.0</td>
</tr>
<tr>
<td>E 1/11</td>
<td>67</td>
<td>19.3</td>
<td>E2/9</td>
<td>54</td>
<td>14.7</td>
</tr>
<tr>
<td>E 1/12</td>
<td>69</td>
<td>19.6</td>
<td>E2/10</td>
<td>52</td>
<td>17.3</td>
</tr>
<tr>
<td>E 1/14</td>
<td>65</td>
<td>19.3</td>
<td>E2/11</td>
<td>54</td>
<td>16.9</td>
</tr>
<tr>
<td>E 1/15</td>
<td>66</td>
<td>19.9</td>
<td>E2/12</td>
<td>54</td>
<td>17.0</td>
</tr>
<tr>
<td>E 1/17</td>
<td>65</td>
<td>18.5</td>
<td>E2/13</td>
<td>53</td>
<td>17.6</td>
</tr>
<tr>
<td>E 1/18</td>
<td>68</td>
<td>19.7</td>
<td>E2/14</td>
<td>56</td>
<td>14.0</td>
</tr>
<tr>
<td>E 1/19</td>
<td>67</td>
<td>19.3</td>
<td>E2/16</td>
<td>52</td>
<td>17.8</td>
</tr>
<tr>
<td>E 1/20</td>
<td>67</td>
<td>18.9</td>
<td>E2/17</td>
<td>55</td>
<td>16.9</td>
</tr>
<tr>
<td>E 1/21</td>
<td>65</td>
<td>19.8</td>
<td>E2/18</td>
<td>52</td>
<td>15.0</td>
</tr>
<tr>
<td>E 1/22</td>
<td>67</td>
<td>19.6</td>
<td>E2/19</td>
<td>54</td>
<td>14.5</td>
</tr>
<tr>
<td>E 1/23</td>
<td>65</td>
<td>19.4</td>
<td>E2/20</td>
<td>55</td>
<td>16.3</td>
</tr>
<tr>
<td>E 1/24</td>
<td>68</td>
<td>19.6</td>
<td>E2/21</td>
<td>53</td>
<td>16.8</td>
</tr>
<tr>
<td>E 1/25</td>
<td>69</td>
<td>19.5</td>
<td>E2/22</td>
<td>57</td>
<td>17.5</td>
</tr>
<tr>
<td>E 1/27</td>
<td>68</td>
<td>19.3</td>
<td>E2/23</td>
<td>53</td>
<td>16.8</td>
</tr>
<tr>
<td>E 1/29</td>
<td>65</td>
<td>18.9</td>
<td>E2/24</td>
<td>57</td>
<td>17.3</td>
</tr>
<tr>
<td>E07-C1</td>
<td>70</td>
<td>20.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E07-C2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>17.3</td>
</tr>
<tr>
<td>Mean</td>
<td>67.05</td>
<td>19.45</td>
<td>-</td>
<td>55</td>
<td>16.2</td>
</tr>
</tbody>
</table>

17
maturity as a result of which the grain moisture at harvest is lowered as well (Petrov, 2005, 2005a).

The opportunities of combining low grain moisture at harvest and drought-resistance have been researched by other breeders (Ignatiev, 2011). The lowering of the plant height and the lower sowing of the first ear in the improved populations, compared to the source populations may serve as marker indices in the phenotypic cycle but they need to be further and more thoroughly studied.

In 2013 lines from the second cycle of breeding were sown on an isolated filed with two inbred lines XM 4416 and PAU 1617 for testing. The testcrosses were tested in 2014 for grain yield, length of vegetative period, moisture content and combining ability, after which the progress of the recurrent selection will be evaluated.

Conclusion

The recurrent selection of an early flowering is an effective selection method for shortening the vegetative period in late exotic populations. The purposeful selection of early maturity leads to lowering the grain moisture content at harvest in the obtained progeny. As a direct result of the work of improvement, progeny with a period of days until silking shorter by 5 days on average and grain moisture lowered by 1.1% were obtained. They form a new improved maize population which sets out to continue the selection of improvement.

References

Hallauer AR and Sears JH, 1972. Integrating exotic germplasm into
corn belt maize breeding programs. Crop Science, 12, 203-206.

Ignatiev AS, 2011. Evaluation of new source material in creating mid-early and mid-late maize hybrids with an intensive type of giving off grain moisture. Thesis for PhD, Russia, Zernograd, GNU “I.G. Kalinenko” (Ru).

Lemeshtenko RA and Suprunov AI, 2012. Study of the new inbred maize lines of the central area of the Krasnodar territory. Corn and sorghum, 2, 7-10 (Ru).

Mitev P, 1998. Use of exotic germplasm to expand the genetic base of maize. Thesis for PhD, University Ruse (Bg).

Suprunov AI, Valerevich RL, Chistjakov SN and Pavlova NS, 2013. The creation of new source material for selection of early lines of maize. Corn and sorghum, 2, 6-10 (Ru).

Review

Antimicrobial activity of *Lactobacillus acidophilus* against pathogenic and food spoilage microorganisms: A review
T. Dinev, G. Beev, S. Denev, D. Dermendzhieva, M. Tzanova, E. Valkova

Genetics and Breeding

Heterosis and degrees of dominance of grain yield and grain yield elements in maize hybrids in different groups of ripeness
M. Ilchovska

Use of recurrent selection of early flowering in late maize synthetic population. Results of second cycle of breeding.
N. Petrovska, V. Valkova

Productivity and adaptability of new genotypes field pea (*Pisum sativum* L.) cultivated under environmental condition of Southern Romania
R. Sturzu, A. M. Ene, Cr. Melucă, J. M. Cojocaru

Nitrogen uptake and expense in durum wheat depending on genotype and nitrogen fertilization
G. Panayotova, M. Almaliev, S. Kostadinova

Nutrition and Physiology

Haematological investigations upon acute intoxication with carbofuran in dogs
R. Binev, I. Valchev, R. Russenov, Y. Nikolov

Production Systems

Phytosanitary status and yield of kamut (*Triticum turgidum polonicum* L.) grown in organic and biodynamic farming
V. Maneva, D. Atanasova, T. Nedelcheva

Hot-water treatment of gladiolus cormels for control of corm-borne fungal diseases
S. Bistrichanov, T. Vatchev, Z. Avramov

Productivity of common wheat (*Triticum aestivum* L.) grown after various predecessors and nitrogen fertilization rates
M. Gerdzhikova

Agriculture and Environment

Agro-ecological assessment of manure from different farm animals by content of biogenic elements
D. Dermendzhieva, G. Kostadinova, G. Petkov, D. Dimov, T. Dinev, T. Penev, Ch. Miteva, J. Mitev
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening of cucurbitaceous rootstocks against root-knot nematodes (Meloidogyne spp.) and soilborne pathogens (Fusarium spp. and Pythium spp.)</td>
<td>62</td>
</tr>
<tr>
<td>V. Yankova, D. Markova, N. Velkov, S. Masheva</td>
<td></td>
</tr>
<tr>
<td>Animal hygiene assessment of microclimate in semi open free-stall barns for dairy cows</td>
<td>67</td>
</tr>
<tr>
<td>D. Dimov, Ch. Miteva, I. Marinov, Zh. Gergovska, T. Penev, A. Enchev</td>
<td></td>
</tr>
<tr>
<td>Product Quality and Safety</td>
<td></td>
</tr>
<tr>
<td>Accumulation of astaxanthin and canthaxanthin in muscle tissues of Rainbow trout (Oncorhynchus mykiss W.) fed with xanthophyll supplemented feed</td>
<td>77</td>
</tr>
<tr>
<td>M. Tzanova</td>
<td></td>
</tr>
<tr>
<td>Chemical composition and technological characteristics of wines from red grape varieties, selected in Bulgaria</td>
<td>83</td>
</tr>
<tr>
<td>V. Haygarov, T. Yoncheva, Z. Nakov, M. Ivanov, D. Dimitrov</td>
<td></td>
</tr>
</tbody>
</table>
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.).

The following order in the reference list is recommended:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.