AGRICULTURAL
SCIENCE AND TECHNOLOGY

2017

An International Journal Published by Faculty of Agriculture,
Trakia University, Stara Zagora, Bulgaria
Editor-in-Chief
Georgi Petkov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria
E-mail: gpetkov@af.uni.sz.bg

Co-Editor-in-Chief
Dimitar Panayotov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections
Genetics and Breeding
Tsanko Yablanski (Bulgaria)
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsennov (Bulgaria)
Max Rothachild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Stoicho Metodiev (Bulgaria)
Bojin Bojinov (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Ivan Varlyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Banko Banev (Bulgaria)
Georgi Zhelyazkov (Bulgaria)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)
Roumiana Tsenkova (Japan)

English Editor
Yanka Ivanova (Bulgaria)

Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editor. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
There are no submission / handling / publication charges.
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence.
They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.
The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines
The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc. and AGRIS (FAO).
The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).
The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.
This issue is printed with the financial support by Contract No DNP 05-21/20.12.2016, financed from Fund “Scientific Research” grant Bulgarian scientific Periodicals.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student's campus, 6000 Stara Zagora Bulgaria
Telephone: +359 42 699330 +359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu
Evaluation of high yielding mutants of *Hordeum vulgare* cultivar Izgrev

B. Dyulgerova*, N. Dyulgerov

Institute of Agriculture, 8400 Karnobat, Bulgaria

(Manuscript received 7 February 2017; accepted for publication publication 31 May 2017)

Abstract. Seeds of *Hordeum vulgare* L. cultivar Izgrev were treated with different concentrations of sodium azide to induce genetic variability for the selection of genotypes with improved traits. After passing through different stages of selection, 18 promising mutants were selected for further studies. Eighteen mutants and their parent and national standard cultivar Veslets were evaluated in Complete Block Design with four replications. The research was conducted in 2013 – 2014 and 2014 – 2015 growing seasons in the experimental field of the Institute of Agriculture Karnobat, Southeastern Bulgaria. The characters studied included days to heading, plant height, lodging, peduncle length, spike length, awn length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight and grain yield. Wide variation among mutant lines was observed for different traits. Mutant lines M4/16 and M 3/14 produced significantly greater grain yield than the parent and standard cultivar. Positive changes in lodging tolerance, grain number per spike, grain weight per spike, 1000 grains weight were also observed. This study showed positive effects in the use of mutation in inducing improvement for grain yield and some yield related traits.

Keywords: barley, mutation, sodium azide, grain yield

Introduction

To improve yield and other traits in barley, many breeding techniques are being successfully used. Mutation breeding is one of the important techniques to induce variation. Induced mutation had significantly contributed in developing superior crop varieties of seed and vegetatively propagated crops. The mutant cultivars in different crops had great economic impact on agriculture and food production in many countries, including Bulgaria (Ahloowalia et al., 2004; Jain, 2010; Tomleková, 2010). More than 3000 varieties of different crops have been officially released by mutation breeding technique (Joint FAO/IAEA Mutant Variety Database). Mutant populations have now been created for many cereal crops, including rice (Singh et al., 1998; Suzuki et al., 2008), *Triticum durum* (Sakin and Yildirim, 2004) and bread wheat (Slade et al., 2005).

The mutants developed in barley had great potential for direct release and to include them in cross breeding programs (Maluszynski and Szarejko, 2005). Many barley cultivars with tolerance to different biotic and abiotic stresses and improved traits have been developed in the world through induced mutagenesis (Ahloowalia et al., 2004).

The aim of the present study was to evaluate mutant lines from *Hordeum vulgare* cultivar Izgrev for grain yield and yield associated traits.

Material and methods

The research work was conducted during 2013 – 2014, 2014 – 2015 and 2015 – 2016 growing seasons at the Institute of Agriculture Karnobat, Southeastern Bulgaria. The 18 mutants, their parent variety Izgrev and national check variety Veslets were used as plant material. Pre-soaked in water for 16 hours seeds were treated with 2 mM and 3 mM sodium azide for 2 hours, prepared in buffer solution (pH=3) at room temperature and washed for 6 hours after treatment. The M1 plants grown in field were harvested in bulk. In M2 generation one spike per selected plant was harvested and seed of each M2 spike was sown in the field as spike to row progeny for M3 generation. The parent variety was planted in every 10 rows as a check. The mutants were developed through selection for higher yield than the parental material by applying selection pressure from crops had great economic impact on agriculture and food production.

The characters studied included days to heading, plant height, lodging, peduncle length, spike length, awn length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight and grain yield. The data were standardized and to include them in cross breeding programs. The data were recorded on plant basis by randomly selecting 10 plants from each plot. Days for heading, lodging, 1000 kernel weight and grain yield were estimated on plot basis.

The significance of differences among means was compared by using Least Significant Difference (LSD) test at the 0.05 level of probability and the correlations were analysed by Pearson’s correlation coefficient. The cluster analysis was performed using the program Statistica that adopts Euclidian distance as a measure of dissimilarity and Ward’s method as the clustering algorithm (Ward, 1963). Before computing the data were standardized.

Results and discussion

Mutant lines showed variation in plant height – from 84.13 to 101.88 cm (Table 1). Three mutant lines (M 2/18 M 3/20 M 4/23) had significantly higher plants compared to parental cultivar. Mutant M
Table 1. Mean performance (2013 – 2014 and 2014 – 2015 growing seasons) of mutant lines from cv. Izgrev

<table>
<thead>
<tr>
<th>Mutant lines</th>
<th>PH</th>
<th>L</th>
<th>DH</th>
<th>SL</th>
<th>AL</th>
<th>PL</th>
<th>SNS</th>
<th>GNS</th>
<th>GWS</th>
<th>TGW</th>
<th>GY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veslets</td>
<td>96.00</td>
<td>7.38</td>
<td>189.75</td>
<td>8.16</td>
<td>13.20</td>
<td>25.89</td>
<td>71.67</td>
<td>60.18</td>
<td>3.01</td>
<td>46.18</td>
<td>5830</td>
</tr>
<tr>
<td>Izgrev</td>
<td>91.25</td>
<td>7.50</td>
<td>190.50</td>
<td>8.51</td>
<td>11.97</td>
<td>25.15</td>
<td>72.52</td>
<td>60.53</td>
<td>2.72</td>
<td>45.66</td>
<td>5840</td>
</tr>
<tr>
<td>M 1/3</td>
<td>84.00*</td>
<td>8.38*</td>
<td>190.88</td>
<td>9.37</td>
<td>12.02</td>
<td>24.94</td>
<td>73.51</td>
<td>62.51</td>
<td>3.06</td>
<td>44.42</td>
<td>6140</td>
</tr>
<tr>
<td>M 1/9</td>
<td>85.88</td>
<td>8.13</td>
<td>191.13</td>
<td>9.42</td>
<td>12.89*</td>
<td>26.05</td>
<td>72.97</td>
<td>64.99</td>
<td>3.21</td>
<td>46.71</td>
<td>6160</td>
</tr>
<tr>
<td>M 2/7</td>
<td>85.88</td>
<td>7.63</td>
<td>191.50</td>
<td>9.07</td>
<td>13.15*</td>
<td>24.03</td>
<td>68.99</td>
<td>60.47</td>
<td>2.92</td>
<td>46.69</td>
<td>5510</td>
</tr>
<tr>
<td>M 2/8</td>
<td>99.38*</td>
<td>6.50*</td>
<td>192.38</td>
<td>8.57</td>
<td>11.43</td>
<td>24.47</td>
<td>76.02</td>
<td>66.81*</td>
<td>2.92</td>
<td>44.31</td>
<td>6010</td>
</tr>
<tr>
<td>M 2/9</td>
<td>88.50</td>
<td>8.50*</td>
<td>194.63*</td>
<td>9.74*</td>
<td>10.98*</td>
<td>24.48</td>
<td>78.70*</td>
<td>65.02</td>
<td>3.03</td>
<td>43.01*</td>
<td>5780</td>
</tr>
<tr>
<td>M 2/14</td>
<td>84.13*</td>
<td>7.88</td>
<td>196.50*</td>
<td>8.62</td>
<td>11.85</td>
<td>21.42</td>
<td>69.98</td>
<td>61.65</td>
<td>2.91</td>
<td>41.34*</td>
<td>5680</td>
</tr>
<tr>
<td>M 2/18</td>
<td>98.88*</td>
<td>7.00</td>
<td>190.38</td>
<td>9.96*</td>
<td>11.30</td>
<td>28.99*</td>
<td>75.57</td>
<td>66.89*</td>
<td>3.05</td>
<td>46.38</td>
<td>6350</td>
</tr>
<tr>
<td>M 3/6</td>
<td>95.38</td>
<td>7.88</td>
<td>195.63*</td>
<td>8.07</td>
<td>11.23</td>
<td>23.88</td>
<td>67.42</td>
<td>58.75</td>
<td>2.58</td>
<td>43.58*</td>
<td>5010</td>
</tr>
<tr>
<td>M 3/7</td>
<td>89.82</td>
<td>7.25</td>
<td>186.75*</td>
<td>8.21</td>
<td>12.19</td>
<td>27.51</td>
<td>67.69</td>
<td>59.83</td>
<td>2.80</td>
<td>42.83*</td>
<td>6350</td>
</tr>
<tr>
<td>M 3/8</td>
<td>86.19</td>
<td>7.13</td>
<td>189.13</td>
<td>7.46</td>
<td>11.87</td>
<td>24.85</td>
<td>63.50*</td>
<td>52.28*</td>
<td>2.62</td>
<td>46.56</td>
<td>5900</td>
</tr>
<tr>
<td>M 3/14</td>
<td>86.38</td>
<td>8.13</td>
<td>193.38</td>
<td>9.74*</td>
<td>10.54*</td>
<td>26.87</td>
<td>76.57</td>
<td>67.48*</td>
<td>3.30*</td>
<td>49.37*</td>
<td>6840</td>
</tr>
<tr>
<td>M 3/20</td>
<td>101.88*</td>
<td>7.13</td>
<td>190.63</td>
<td>8.48</td>
<td>11.02*</td>
<td>27.42</td>
<td>74.69</td>
<td>66.43</td>
<td>2.67</td>
<td>39.74*</td>
<td>6170</td>
</tr>
<tr>
<td>M 4/10</td>
<td>87.75</td>
<td>8.38*</td>
<td>191.25</td>
<td>9.39</td>
<td>12.29</td>
<td>24.11</td>
<td>74.85</td>
<td>66.37</td>
<td>3.03</td>
<td>41.73*</td>
<td>6180</td>
</tr>
<tr>
<td>M 4/16</td>
<td>84.75</td>
<td>7.88</td>
<td>196.63*</td>
<td>8.53</td>
<td>11.18</td>
<td>26.10</td>
<td>76.25</td>
<td>66.01</td>
<td>2.88</td>
<td>46.71</td>
<td>5970</td>
</tr>
<tr>
<td>M 4/18</td>
<td>88.00</td>
<td>8.00</td>
<td>191.00</td>
<td>9.03</td>
<td>11.92</td>
<td>24.58</td>
<td>72.02</td>
<td>61.58</td>
<td>3.02</td>
<td>46.48</td>
<td>6050</td>
</tr>
<tr>
<td>M 4/23</td>
<td>100.25*</td>
<td>6.88</td>
<td>197.25*</td>
<td>9.38</td>
<td>10.91*</td>
<td>27.03</td>
<td>78.70</td>
<td>70.18*</td>
<td>3.29*</td>
<td>49.05*</td>
<td>6730</td>
</tr>
<tr>
<td>M 5/4</td>
<td>91.60</td>
<td>8.13</td>
<td>193.88*</td>
<td>8.82</td>
<td>12.25</td>
<td>25.23</td>
<td>71.99</td>
<td>61.58</td>
<td>2.57</td>
<td>40.06*</td>
<td>5870</td>
</tr>
<tr>
<td>M 5/8</td>
<td>89.13</td>
<td>7.13</td>
<td>194.88*</td>
<td>8.26</td>
<td>11.52</td>
<td>24.06</td>
<td>68.02</td>
<td>57.73</td>
<td>2.58</td>
<td>43.95*</td>
<td>6320</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>6.9</td>
<td>0.84</td>
<td>3.24</td>
<td>1.12</td>
<td>0.91</td>
<td>2.52</td>
<td>6.27</td>
<td>6.18</td>
<td>0.50</td>
<td>1.71</td>
<td>560</td>
</tr>
</tbody>
</table>

* significantly different from parent cultivar at the 5% level; PH = plant height (cm), L = lodging (scale 9-1), DH = days to heading, SL = spike length (cm), AL = awn length (cm), PL = peduncle length (cm), SNS = spikelet number per spike, GNS = grain number per spike, GWS = grain weight per spike (g), TGW = 1000 grains weight (g), GY = grain yield (kg/ha)

Table 2. Correlation coefficients between grain yield and yield related traits

<table>
<thead>
<tr>
<th>Traits</th>
<th>L</th>
<th>DH</th>
<th>SL</th>
<th>AL</th>
<th>PL</th>
<th>SNS</th>
<th>GNS</th>
<th>GWS</th>
<th>TGW</th>
<th>GY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>-0.667**</td>
<td>-0.021</td>
<td>-0.054</td>
<td>-0.291</td>
<td>0.471*</td>
<td>0.286</td>
<td>0.345</td>
<td>-0.088</td>
<td>-0.100</td>
<td>0.107</td>
</tr>
<tr>
<td>L</td>
<td>0.160</td>
<td>0.401</td>
<td>0.136</td>
<td>-0.331</td>
<td>0.135</td>
<td>0.037</td>
<td>0.209</td>
<td>-0.156</td>
<td>-0.202</td>
<td></td>
</tr>
<tr>
<td>DH</td>
<td>0.157</td>
<td>-0.387</td>
<td>-0.361</td>
<td>0.335</td>
<td>0.317</td>
<td>0.071</td>
<td>0.037</td>
<td>-0.107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>-0.188</td>
<td>0.267</td>
<td>0.736**</td>
<td>0.734**</td>
<td>0.752**</td>
<td>0.228</td>
<td>0.429*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL</td>
<td>-0.236</td>
<td>-0.444*</td>
<td>-0.414</td>
<td>-0.055</td>
<td>-0.069</td>
<td>-0.333</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>0.352</td>
<td>0.439*</td>
<td>0.267</td>
<td>0.309</td>
<td>0.601**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNS</td>
<td>0.928**</td>
<td>0.645**</td>
<td>0.157</td>
<td>0.451*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNS</td>
<td>0.673**</td>
<td>0.132</td>
<td>0.509*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GWS</td>
<td>0.581**</td>
<td>0.536*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGW</td>
<td>0.349</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*significant at the 5% level; ** significant at the 1% level; PH = plant height (cm), L = lodging (scale 9-1), DH = days to heading, SL = spike length (cm), AL = awn length (cm), PL = peduncle length (cm), SNS = spikelet number per spike, GNS = grain number per spike, GWS = grain weight per spike (g), TGW = 1000 grains weight (g), GY = grain yield (kg/ha)
peduncle length and it was negatively associated with lodging. Days to heading didn’t show any significant correlations with other studied traits. Spike length had a positive correlation with spikelet number per spike, grain number per spike, grain weight per spike and grain yield. Spikelet number per spike had a positive correlation with spike length, grain number per spike, grain weight per spike and grain yield and a negative correlation with awn length. Grain number per spike was positively associated with spike length, peduncle length, spikelet number per spike, grain weight per spike and grain yield. Grain weight per spike had a positive correlation with spike length, spikelet and grain number per spike, and 1000 grains weight. Grain yield had the positive and significant correlation with spike length, peduncle length, spikelet and grain number per spike, grain weight per spike. Similar results are also reported by Mohammadi et al. (2006), Singh et al. (2014), Ahmadi et al. (2016), Vitrakot et al. (2016). Unlike the findings of Moreno et al. (2003) and Jouyban et al. (2015), in our study, the correlation coefficient between grain yield and 1000 grains weight was not significant. The non-significant correlation between that traits is also reported by Fotokian et al. (2014) and Öztürk et al. (2014). The differential relations of yield component traits with grain yield may be attributed to environmental and genotypic effects (Asseng et al., 2002).

The results of the present study illustrated that mutagenesis is an efficient tool for increasing genetic variability in barley. Mutant lines showed wide variation in various studied traits. Some of the mutant lines have shown superiority over parent and standard variety for grain yield and different yield associated traits. These results are in agreement with the findings of several authors who reported the selection of positive mutations such as reduced plant height, higher grain weight per spike and 1000 grain weight, more grains in a spike, higher grain yield, etc. (Ramesh et al., 2003; Deniz, 2007; Singh and Balyan, 2009; Laghari, 2012; Albokari, 2014; Obare et al., 2014).

Conclusion

The study demonstrated positive effects in the use of mutation in inducing an improvement for grain yield and some yield related traits in barley. Positive changes in plant height (M 1/3 and M 2/4), lodging tolerance (M 1/3, M 2/9 and M 4/10), grain number per spike (M 4/23, M 3/14, M 2/18 and M 2/8), grain weight per spike (M 4/23 and M 3/14), 1000 grains weight (M 4/23 and M 3/14) were observed. Mutant lines, M 4/16, and M 3/14 produced a significantly greater grain yield than the parent and standard cultivar.

References

Review

Alternatives for optimisation of rumen fermentation in ruminants
T. Slavov

Genetics and Breeding

Characterization of a new winter malting barley cultivar Ahil
B. Dyulgerova, D. Vulchev, T. Popova

Evaluation of high yielding mutants of *Hordeum vulgare* cultivar Izgrev
B. Dyulgerova, N. Dyulgerov

Nutrition and Physiology

In vitro gas production of different feeds and feed ingredients at ruminants
E. Videv, J. Krastanov, S. Laleva, T. Angelova, M. Oblakova, N. Oblakov, D. Yordanova, V. Karabashev

Evaluation of chemical composition of raw and processed tropical sickle pod (*Senna obtusifolia*) seed meal
Augustine C., Kwari I.D., Igwebuike J.U., Adamu S.B.

Effect of urea-fortified all concentrate corncob diets on serum biochemical and hematological indices of West African dwarf goats
U. M. Kolo, A. A. Adeloye, M. B. Yousuf

Production Systems

Analysis of the technological dairy cows traffic "to and from" herringbone milking parlors
K. Peychev, D. Georgiev, V. Dimova, V. Georgieva

Effect of pre-sowing soil tillage for wheat on the crop structure and the yield components under the conditions of slightly leached chernozem soil in Dobrudzha region
P. Yankov, M. Drumeva

Study on the process of unloading grain harvesters at the end of the field
G. Tihanov

Agriculture and Environment

Modeling and simulation of fuzzy logic controller for optimization of the greenhouse microclimate management
Didi Faouzi, N. Bibi-Triki, B. Draoui, A. Abene
Floristic diversity of ‘Chinarite’ protected area – Rodopi municipality, Bulgaria
L. Dospatliev, M. Lacheva

Heavy metal pools in urban soils from city parks of Sofia, Bulgaria
V. G. Kachova, I. D. Atanassova

Ecological characteristics of reclaimed areas in Pernik mines region, Bulgaria
I. Kirilov, M. Banov

Reclamation of soil excavated from construction and mine searching areas in Turkey
F. Apaydin

Product Quality and Safety

Concentration of sulfur-containing amino acids at turkey broilers during and after muscle dystrophy, fed with deficient feed supplemented with oxidised fat
K. Stoyanchev

Exopolysaccharide influence’s on acid gel formation
K. Yoanidu, P. Boyanova, P. Panayotov

Carcass characteristics and technological properties of Musculus Longissimus Lumborum at lambs from the Bulgarian dairy synthetic population and its F1 crosses with meat breeds
N. Ivanov, T. Angelova, S. Laleva S. Ribarsi, D. Miteva, D. Yordanova, V. Karabashev, I. Penchev
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section "Material and methods".

Example:

Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.