AGRICULTURAL SCIENCE AND TECHNOLOGY

2017

An International Journal Published by Faculty of Agriculture, Trakia University, Stara Zagora, Bulgaria
Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines
The articles appearing in this journal are indexed and abstracted in: DOI; EBSCO Publishing Inc. and AGRIS (FAO). The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters). The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.
This issue is printed with the financial support by Contract № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The journal is accepted to be indexed with the support of a project № B100-201/20.12.2016, financed from Fund ‘Scientific Research’ grant Bulgarian scientific Periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editors and Sections
Genetics and Breeding
Tsanko Yablanski (Bulgaria)
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsanov (Bulgaria)
Max Rothachild (USA)
Isha Soysal (Turkey)
Horia Grosu (Romania)
Stoicho Metodiev (Bulgaria)
Bojin Bojinov (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Ivan Varlyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)
Roumiana Tsenkova (Japan)

English Editor
Yanka Ivanova (Bulgaria)
AGRICULTURAL
SCIENCE AND TECHNOLOGY

2017

An International Journal Published by Faculty of Agriculture, Trakia University, Stara Zagora, Bulgaria
Carcass characteristics and technological properties of *Musculus Longissimus Lumborum* at lambs from the Bulgarian dairy synthetic population and its F1 crosses with meat breeds

N. Ivanov *, T. Angelova¹, S. Laleva¹, S. Ribarski², D. Miteva¹, D. Yordanova¹, V. Karabashev¹, I. Penchev²

¹Agricultural Institute, 6000 Stara Zagora, Bulgaria
²Department of Morphology, Physiology and Nutrition, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

(Manuscript received 28 March 2017; accepted for publication 26 May 2017)

Abstract. The purpose of this study is to determine the effects of the breed on some of the carcass characteristics and the technological properties of *Musculus Longissimus Lumborum* in lambs from the Bulgarian Dairy Synthetic Population and its F₁ crosses with Ile de France and Mutton Charollais breeds. The scientific study took place at the Agricultural Institute of Stara Zagora, Bulgaria. Object of the study were lambs from the Bulgarian Dairy Synthetic Population and its crosses with Ile de France and Mutton Charollais breeds. The internal organs weight of the animals from the three groups was measured after their slaughter. In order to determine the meat/bones ratio, the left carcass halves were deboned. The eye muscle area and analyzed samples of *Musculus Longissimus Lumborum* was determined. The results show a slight variation in the weight of the internal organs of the animals from the three groups. The Mutton Charollais crosses come first in terms of eye muscle area (11.34 cm²), followed by the Ile de France crosses (11.21 cm²), and the lambs from the reference group come last with only 8.64 cm² (P ≤ 0.001). With regard to the meat/bones ratio, it was found out that in the Ile de France crosses it is the highest (2.90:1), followed by the Mutton Charollais crosses (2.68:1), and the lambs from the reference group (2.43:1) where it is the lowest (P >0.05). Ile de France crosses exhibited statistically significantly higher meat tenderness (P ≤ 0.001) and water-holding capacity (WHC) (P ≤ 0.01), while Mutton Charollais crosses – considerably higher cooking losses (P < 0.001) than control animals.

Keywords: cross lambs, meat quality, technological properties of the meat

Introduction

In recent years, the quality and safety of meat as main food product are becoming more and more significant. In the opinion of Joo et al. (2013), meat quality is of importance for both consumers and the meat industry. Furthermore, meat quality is of significant importance for consumers’ health. Meat consumers judge its quality according to its appearance and in this connection Cividini et al. (2009) point out that consumers are the last link in the lamb meat supply chain meaning that meat has to be able to satisfy their requirements. Meat juiciness, flavor and tenderness are considered the main factors determining its taste (Acebron and Dopico, 2000; Brewer and Novakofski, 2008; Amin et al., 2014).

The pH value of meat provides evidence for its quality. The pH values of the fresh meat range from 6.00 to 6.20, and those above 6.60 indicate that it is unfit for human consumption. Apart from being a criterion for the meat freshness, the measured pH values determine the meat colour, tenderness and its water absorption capacity (WAC) (Kerry et al., 2002).

Fresh meat quality to a bigger extent is dependent on its water-holding capacity (WHC) which from technological and economical point of view is important for the food industry but also for meat consumers at the time of meat purchase (Prevolnik et al., 2010). High water-loss rates are also linked to the quality of meat and meat products since they affect mainly its juiciness and tenderness. Apart from that, precious proteins, vitamins and minerals are lost with the water. When buying meat from the supermarket, the water lost due to bad WHC can be seen in the form of reddish liquid at the bottom of the pack (Otto et al., 2004).
was determined according to the formula below:

\[MBR = \frac{a}{b} \]

where: MBR is the meat/bones ratio, a is meat weight after deboning the left carcass half, and b is bone weight after deboning.

The MLL eye muscle area was determined using a Planimeter, model 0393. The pH values were measured on the 24th hour after the slaughter using a Testo 205 pH meter. The water-holding capacity of the meat was determined using the traditional method introduced by Grau and Hamm (1953) and its WAC was determined by using the method introduced by Kiossev and Danchev (1979). The meat tenderness was measured with a penetrometer DSD VEB Feinmess (Dresden, Germany). The losses resulting from the thermal processing of the meat (cooking losses) was determined after cooking meat samples for 20 min at 150°C.

The results were processed by SYSTAT 13, graphic processing by Excel.

Results and discussion

Table 1 contains results with the weight of the internal organs of the lambs from the Bulgarian Dairy Synthetic Population and its crosses with Ile de France and Mutton Charollais breeds. The weight of the head without the skin for the lambs in both cross groups (0.91 kg) is higher than that of the lambs from the reference group (0.84 kg) (P > 0.05). The bigger weight of the head without the skin in the Ile de France crosses can be explained with the fact that this is a breed trait and their head is larger and with sharper outlines (Nedelchev, 2005). The weight of the body skin is the biggest in the Mutton Charollais crosses (2.74 kg) and the results with regard to the lambs from the Bulgarian Dairy Synthetic Population and the Ile de France crosses are almost the same, 2.30 kg and 2.29 kg, respectively (P > 0.05). The animals from the three groups do not differ significantly in terms of heart, liver, lungs, spleen and kidneys weight. There were no statistically significant differences between the three groups in the weight of visceral organs (Table 1).

The results with regard to MLL eye muscle area can be seen on Figure 1. The Mutton Charollais crosses show the highest score in terms of eye muscle area (11.34 cm²), followed by the Ile de France crosses (11.21 cm²) and the reference group lambs coming last with the smallest area of the eye muscle, i.e. 8.64 cm² (P ≤ 0.001). Higher values of the trait in crossbred lambs are attributed to the effect of meat type specialisation of Mutton Charollais and Ile de France sheep breeds. In other studies involving Ile de France (Cigai x Romanov sheep x Ile de France and Merino-fleisch x Ile de France) higher values of the eye muscle area are determined in comparison with those determined by us (Yankov and Todorova, 2006; Anev,

Table 1. Internal organs weight at the lambs from the three groups

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Group 1 BDSP - a</th>
<th>Group 2 BDSP x IIF - b</th>
<th>Group 3 BDSP x MC - c</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>MEAN±SD</td>
<td>n</td>
<td>MEAN±SD</td>
</tr>
<tr>
<td>Head weight with the skin, kg</td>
<td>3</td>
<td>1.23±0.05</td>
<td>3</td>
<td>1.37±0.15</td>
</tr>
<tr>
<td>Head weight without the skin, kg</td>
<td>3</td>
<td>0.84±0.05</td>
<td>3</td>
<td>0.91±0.10</td>
</tr>
<tr>
<td>Body skin weight, kg</td>
<td>3</td>
<td>2.30±0.05</td>
<td>3</td>
<td>2.29±0.27</td>
</tr>
<tr>
<td>Spleen weight, kg</td>
<td>3</td>
<td>0.06±0.01</td>
<td>3</td>
<td>0.08±0.03</td>
</tr>
<tr>
<td>Heart weight, kg</td>
<td>3</td>
<td>0.12±0.03</td>
<td>3</td>
<td>0.13±0.01</td>
</tr>
<tr>
<td>Liver weight, kg</td>
<td>3</td>
<td>0.47±0.03</td>
<td>3</td>
<td>0.47±0.02</td>
</tr>
<tr>
<td>Lungs weight without the trachea, kg</td>
<td>3</td>
<td>0.43±0.09</td>
<td>3</td>
<td>0.43±0.07</td>
</tr>
<tr>
<td>Kidney weight, kg</td>
<td>3</td>
<td>0.09±0.01</td>
<td>3</td>
<td>0.09±0.01</td>
</tr>
</tbody>
</table>

BDSP - Bulgarian Dairy Synthetic Population; IIF - Ile de France; MC - Mutton Charollais; n.s. (no significant)

Figure 1. Musculus Longissimus Lumborum eye muscle area at the lambs from the three groups

Figure 2. Meat/bones ratio at lambs from the three groups
Table 2. Technological properties of Musculus Longissimus Lumborum at lambs on the 24th hour after slaughter

<table>
<thead>
<tr>
<th>Group</th>
<th>Characteristics</th>
<th>n*</th>
<th>MEAN±SD</th>
<th>n*</th>
<th>MEAN±SD</th>
<th>n*</th>
<th>MEAN±SD</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 BDSP - a</td>
<td>pH values on the 24th hour post mortem</td>
<td>9</td>
<td>5.40±0.07</td>
<td>9</td>
<td>5.37±0.09</td>
<td>9</td>
<td>5.38±0.12</td>
<td>a:b**</td>
</tr>
<tr>
<td>Group 2 BDSP x IlF - b</td>
<td>WHC, %</td>
<td>9</td>
<td>19.19±3.59</td>
<td>9</td>
<td>23.73±1.07</td>
<td>9</td>
<td>23.35±3.60</td>
<td>a:***</td>
</tr>
<tr>
<td>Group 3 BDSP x MC - c</td>
<td>WAC/distilled water, %</td>
<td>9</td>
<td>7.91±3.69</td>
<td>9</td>
<td>7.60±3.54</td>
<td>9</td>
<td>7.17±6.73</td>
<td>a:c*</td>
</tr>
<tr>
<td></td>
<td>WAC/saline solution, %</td>
<td>9</td>
<td>14.33±6.43</td>
<td>9</td>
<td>15.77±2.57</td>
<td>9</td>
<td>13.46±3.65</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>Meat tenderness values, P</td>
<td>15</td>
<td>236.47±1.69</td>
<td>15</td>
<td>330.80±52.69</td>
<td>15</td>
<td>240.00±70.57</td>
<td>a:b***</td>
</tr>
<tr>
<td></td>
<td>Cooking losses, %</td>
<td>9</td>
<td>41.75±2.92</td>
<td>9</td>
<td>43.96±2.32</td>
<td>9</td>
<td>45.02±2.27</td>
<td>a:c***</td>
</tr>
</tbody>
</table>

BDSP - Bulgarian Dairy Synthetic Population; IlF - Ile de France; MC - Mutton Charollais;

n* - number of samples, * - Penetrant degrees, * - P ≤ 0.05, ** - P ≤ 0.01, *** - P ≤ 0.001; n.s. (no significant)

2009), however the lambs were slaughtered after reaching a bigger live weight, 30 - 31 and 40 kg, respectively.

The results with the meat/bones ratio in the lambs from the different groups are presented in Table 2. It can be seen that in terms of this characteristic, the two trial groups significantly surpass the lambs from the Bulgarian Dairy Synthetic Population. The highest scores are of the Ile de France crosses (2.90:1), followed by the Mutton Charollais crosses (2.68:1), and the lowest are the scores of the lambs from the reference group 2.43:1 (P > 0.05). In studies involving meat breed cross lambs (Cigai x Romanov sheep x Mutton Charollais and Cigai x Romanov sheep x Ile de France) slaughtered after reaching live weight of 32 - 34 kg, it has been found out that the meat/bones ratio for both lamb cross types is the same 3.14:1 (Yankov, 2008).

The technological properties of MLL in the lambs from the three groups are presented in Table 2. It can be seen that the values of the pH2 indicator in the three groups of lambs are very close and vary within normal limits of between 5.37 and 5.40. According to Devine et al. (1993), Gonçalves et al. (2004), Jandasek et al. (2014), the pH2, values are considered normal if they are below 5.80 - 5.90. The close pH2 values show that the post-mortem processes in meat occur at the same speed rate in the lambs from the three groups.

With regard to the meat WHC percentage, it can be seen that the two trial groups of animals show a higher score than those from the reference group. The higher percentage in the Ile de France crosses is determined also by other authors (Slavov et al., 2015). The MLL meat has the highest WHC in the Ile de France crosses (23.73%), the Mutton Charollais crosses show 23.35%, and this percentage is the lowest in the lambs from the reference group (19.19%). On the other side, this means that the water loss in the two trial groups of animals is higher than that of the animals from the reference group.

With regard to the water absorption capacity (WAC) of the meat in distilled water, there is no significant variation in the results of the animals from the different groups. More significant are the differences with regard to the WAC of the meat in saline solution. The highest score for the MLL in terms of WAC of the meat in saline solution is for the Ile de France crosses (15.77%), followed by the lambs from the Bulgarian Dairy Synthetic Population (14.33%) and the lowest score is for the Mutton Charollais crosses (13.46%) (P > 0.05).

The highest is the score in terms of MLL meat tenderness in the Ile de France crosses (330.80 P). The Mutton Charollais crosses and the lambs from the reference group have a similar score, 240.00 P and 236.47 P, respectively. We found out that the cooking losses are the highest in the Mutton Charollais crosses (45.02%), Ile de France crosses coming second (43.96%), and the lowest are the cooking losses in the lambs from the Bulgarian Dairy Synthetic Population (41.75%) (P ≤ 0.001). Dimitrov et al. (2009) also have found out that the Mutton Charollais crosses slaughtered after reaching a live weight of 35 kg have higher cooking losses than the source breed (Northeast Bulgarian Fine Fleece Sheep).

Conclusion

In both experimental groups, eye muscle areas were statistically significantly higher (P < 0.001) compared to control lambs. The highest is the score of the lambs from the Mutton Charollais crosses (11.34 cm²), followed by the Ile de France crosses (11.21 cm²), and the lowest is the score in the lambs from the reference group v 8.64 cm². The meat/bones ratio is the highest at the lambs from the Ile de France crosses (2.90:1), followed by the Mutton Charollais crosses (2.68:1) and the lowest score is that of the animals from the Bulgarian Dairy Synthetic Population group (2.43:1) (P > 0.05). Ile de France lamb crosses exhibited statistically significantly higher meat tenderness than Bulgarian Dairy Synthetic population lambs (P < 0.001). The Ile de France crosses had substantially higher water holding capacity values of meat (P < 0.01) as compared to control lambs. The Mutton Charollais crosses exhibited statistically significantly higher cooking losses (P < 0.001), as compared to the other two groups.

References

Nedelchev D, 2005. The breed Ile de France close. Livestock plus, 1, 24-26 (Bg).

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review</td>
<td>Alternatives for optimisation of rumen fermentation in ruminants</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>T. Slavov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genetics and Breeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Characterization of a new winter malting barley cultivar Ahil</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>B. Dyulgerova, D. Vulchev, T. Popova</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluation of high yielding mutants of Hordeum vulgare cultivar Izgrev</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>B. Dyulgerova, N. Dyulgerov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nutrition and Physiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In vitro gas production of different feeds and feed ingredients at ruminants</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>E. Videv, J. Krastanov, S. Laleva, T. Angelova, M. Oblakova, N. Oblakov, D. Yordanova, V. Karabashev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluation of chemical composition of raw and processed tropical sickle pod (Senna obtusifolia) seed meal</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Augustine C., Kwari I.D., Igwebuike J.U., Adamu S.B.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of urea-fortified all concentrate corncob diets on serum biochemical and hematological indices of West African dwarf goats</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>U. M. Kolo, A. A. Adeloye, M. B. Yousuf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis of the technological dairy cows traffic "to and from" herringbone milking parlors</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>K. Peychev, D. Georgiev, V. Dimova, V. Georgieva</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of pre-sowing soil tillage for wheat on the crop structure and the yield components under the conditions of slightly leached chernozem soil in Dobrudzha region</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>P. Yankov, M. Drumeva</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study on the process of unloading grain harvesters at the end of the field</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>G. Tihanov</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agriculture and Environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modeling and simulation of fuzzy logic controller for optimization of the greenhouse microclimate management</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Didi Faouzi, N. Bibi-Triki, B. Draoui, A. Abene</td>
<td></td>
</tr>
</tbody>
</table>
Floristic diversity of ‘Chinarite’ protected area – Rodopi municipality, Bulgaria
L. Dospatliev, M. Lacheva

Heavy metal pools in urban soils from city parks of Sofia, Bulgaria
V. G. Kachova, I. D. Atanassova

Ecological characteristics of reclaimed areas in Pernik mines region, Bulgaria
I. Kirilov, M. Banov

Reclamation of soil excavated from construction and mine searching areas in Turkey
F. Apaydin

Product Quality and Safety
Concentration of sulfur-containing amino acids at turkey broilers during and after muscle dystrophy, fed with deficient feed supplemented with oxidised fat
K. Stoyanchev

Exopolysaccharide influence’s on acid gel formation
K. Yoanidu, P. Boyanova, P. Panayotov

Carcass characteristics and technological properties of Musculus Longissimus Lumborum at lambs from the Bulgarian dairy synthetic population and its F1 crosses with meat breeds
N. Ivanov, T. Angelova, S. Laleva S. Ribarsi, D. Miteva, D. Yordanova, V. Karabashev, I. Penchev
Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted. Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g. (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Thesis: Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.