Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the technical assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc., AGRIS (FAO) and DOAJ. The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This issue is printed with the financial support by Contract No DNP 05-21/20.12.2016, financed from Fund “Scientific Research” grant Bulgarian scientific Periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editors and Sections

Genetics and Breeding
Tsank Yablanski (Bulgaria)
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothachild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Stoicho Metodiev (Bulgaria)
Bojin Bojinov (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Ivan Varlyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Banko Banev (Bulgaria)
Georgy Zhelyazkov (Bulgaria)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)
Roumiana Tsenkova (Japan)

English Editor
Yanka Ivanova (Bulgaria)
In vitro propagation of oil-bearing rose (*Rosa damascena* Mill.)

V. Badzhelova*

Institute of Roses, Essential and Medical Cultures, Kazanlak, Bulgaria

(Manuscript received 12 June 2017; accepted for publication 25 August 2017)

Abstract. The purpose of this research is to develop effective protocol for clonal micro propagation of the oil-bearing rose (*Rosa damascena* Mill.). Explants used in the experiment are 1.0 to 1.5 cm long nodal segments from specially cultivated mother plants. These explants were subjected to a combined method of sterilization with 0.2% solution of HgCl₂, for 3 minutes followed by 0.50% solution of NaClO for 20 minutes and 0.25% solution of NaClO for 30 minutes. The best results of multiplication were obtained in basic MS medium with added BAP quantity of 0.5 to 3.0 mg/L. After being separated from the mother plants the young shoots are placed directly in compost mixture for rooting and adaptation. Thus the process of multiplication is shortened, avoiding the period of in vitro rooting.

Keywords: oil-bearing rose, micropropagation, protocol

Abbreviations: MS - Murashige & Skoog medium, IBA - Indole-3-butyric acid, BAP - 6-Benzylaminopurine, TDZ - Thidiazuron

Introduction

The oil-bearing rose has been the most symbolic industrial crop of Bulgaria. First in the world is the renowned Kazanlak oil-bearing rose (*Rosa damascena* Mill.*f. trigintipetala* Dieck). It has been cultivated for the production of rose oil, rose concrete and rose absolute which are widely used in cosmetics, pharmaceutics and the food industry (Kovacheva and Nedkov, 2007). Presently, oil-bearing rose planting material is mainly obtained from the rooting of sprout cuttings in a cultivation facility, a technology developed by the Institute of Roses, Essential and Medical Cultures in Kazanlak in 1986 (Atanasova and Nedkov, 2004). The first announcement of oil-bearing rose in vitro propagation in Bulgaria has been made by Kornova et al. (2001). Thorpe and Harry (1997) in their own research proved that in vitro techniques were the fastest, the most effective and the easiest way of plant propagation and played a major role in the production of biologically clean and quality planting material.

In research made by Mamaghani et al. (2010) the use of different kinds of hormones combination and concentration by the plants proliferation process was tested. In this research three genotypes of *Rosa damascena* Mill. were developed. They found out that best results are achieved on MS medium with addition of 5mg/L BAP+0.1mg/L TDZ. In study of Ginova and Konadakova (2014) the advantages of in vitro cultivation with bioreactors are shown. Object of this research was the oil-bearing rose. With all the experience until now, this research has been conducted in order to produce a working protocol for clonal micropropagation of the oil-bearing rose. This technology should provide a more effective system for producing plant material in industrial conditions, keeping the quality of plants, finishing the process in shorter production time and using less space for initial growing. Regarding the needs of the new oil-bearing rose plantations the research will be an answer.

Material and methods

In this research „Population No. 5“ of *Rosa damascene* Mill. has been given a laboratory number R3, and the „Eleyna“ cultivar - a laboratory number R3-4, respectively. The plant material has been obtained from elite field crop trials of the Institute of Roses, Essential and Medical Cultures in the town of Kazanlak. The test was conducted in a laboratory for in vitro propagation of INDUSTRIAL PLANTS, LLC, town of Kazanlak and involved three main stages: culture initiation, micropropagation and rooting of the obtained plants. 8-10 cm long nodal segments from stock plants cultivated to this purpose were used as initial explants. After disinfection the plant material was cut into segments 1.0-1.5 cm long, with 1-2 axillary buds just before placing them into a growth medium, each of them in closed glass dishes (Senapati and Rout, 2008). Three types of disinfection were researched, the explants being preliminarily treated with 70% ethylic alcohol on a magnetic stirrer (Table 1.)

The first type involves treatment in 0.2% HgCl₂ solution for 5 minutes. Rinsing in sterile water three times for 5 minutes in a laminar air flow chamber, immediately before placing in growth medium (Ginova and Konadakova, 2013).

The second type involves treatment in 0.5% NaClO solution for 20 minutes and in 0.25% NaClO solution for 30 minutes, constantly stirred on a magnetic stirrer. Rinsing in sterile distilled water three times for 5 minutes.

The third type of disinfection runs in two stages. First stage – 0.2% HgCl₂ solution for 3 minutes and rinsing in sterile distilled water for 2 minutes. Second stage – disinfection in 0.5% NaClO solution for 20 minutes and rinsing in sterile distilled water for 2-3 minutes. The sterilization process continues in 0.25% NaClO solution for 30 minutes and rinsing in sterile distilled water.

A total of 40 explants of each genotype were set up for each type of disinfection. One explant was placed per jar and cultivated in...
premises with controlled conditions at 21°C, illuminance 2000 lux, cool white, period light/dark - 12/10, for 20 days. The induction and proliferation growth medium was MS (Murashige and Skoog, 1962), hormones free. The medium was hardened with Agar 6 g/L., and pH was fixed at 6.0 before sterilization which was conducted at 121°C under 1.1 atm., for 20 minutes. The disinfected live explants, 20 days after culture induction were transferred in multiplication media. The media were alkaline MS with different combinations of 8 types of growth regulators added, specified in Table 2, 4 pcs. in one glass jar. The viable explants were transferred onto a fresh medium every 4 weeks. The root formation process for both genotypes passed through 2 types specified in Table 3. First type – one part of the sprouts was placed in a rooting medium. The medium was MS with different auxins added and MS unchanged and hormones free (Canli and Kazaz, 2009). Under such

Table 1. Impact of disinfection over explants

<table>
<thead>
<tr>
<th>Disinfection variant</th>
<th>Genotype</th>
<th>Number of explants</th>
<th>Alive pure explants</th>
<th>Died explants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>number</td>
<td>%</td>
</tr>
<tr>
<td>1. 0.2% solution of HgCl₂ for 5 min</td>
<td>R3</td>
<td>40</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>R3-4</td>
<td>40</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>Total for variant 1</td>
<td></td>
<td>80</td>
<td>17</td>
<td>21.25</td>
</tr>
<tr>
<td>2. 0.5% solution for NaClO for 20 min and 0.25% for 30 min</td>
<td>R3</td>
<td>40</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>R3-4</td>
<td>40</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>Total for variant 2</td>
<td></td>
<td>80</td>
<td>13</td>
<td>16.25</td>
</tr>
<tr>
<td>3. 0.2% solution of HgCl₂ for 3 min + 0.5% solution for NaClO for 20 min and 0.25% for 30 min</td>
<td>R3</td>
<td>40</td>
<td>29</td>
<td>72.5</td>
</tr>
<tr>
<td></td>
<td>R3-4</td>
<td>40</td>
<td>32</td>
<td>80</td>
</tr>
<tr>
<td>Total for variant 3</td>
<td></td>
<td>80</td>
<td>61</td>
<td>76.25</td>
</tr>
</tbody>
</table>

* death infected, # death from the disinfectant

Table 2. Influence testing of different kind and concentration of growth hormones over the multiplication process

<table>
<thead>
<tr>
<th>Medium variant: R3</th>
<th>Amount of used explants</th>
<th>Shoots per explant</th>
<th>Shoots total</th>
<th>Total multiplied explants, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Explants with presented number of shoots</td>
<td>0 1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>1. MS+ 0.5 BAP mg/L</td>
<td>20</td>
<td>1 1 3 2 5 8</td>
<td>73</td>
<td>95</td>
</tr>
<tr>
<td>2. MS+ 3.0 BAP mg/L</td>
<td>20</td>
<td>0 0 2 6 4 5</td>
<td>66</td>
<td>100</td>
</tr>
<tr>
<td>3. MS+ 5.0 BAP mg/L</td>
<td>20</td>
<td>0 6 3 6 2 3</td>
<td>53</td>
<td>100</td>
</tr>
<tr>
<td>4. MS+ 0.5 BAP+1.5 kinetin mg/L</td>
<td>20</td>
<td>3 1 7 6 1 2</td>
<td>47</td>
<td>85</td>
</tr>
<tr>
<td>5. MS+ 0.5 BAP+1.5 zeatin mg/L</td>
<td>20</td>
<td>3 9 7 1 0 0</td>
<td>26</td>
<td>85</td>
</tr>
<tr>
<td>6. MS+ 0.5 BAP+1.5 TDZ mg/L</td>
<td>20</td>
<td>5 9 4 0 1 1</td>
<td>26</td>
<td>75</td>
</tr>
<tr>
<td>7. MS+ 0.5 BAP+0.5 CPPU mg/L</td>
<td>20</td>
<td>9 6 3 1 1 0</td>
<td>19</td>
<td>55</td>
</tr>
<tr>
<td>8. MS mod+ 0.5 BAP+OX</td>
<td>20</td>
<td>9 8 1 2 0 0</td>
<td>16</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medium variant: R3-4</th>
<th>Amount of used explants</th>
<th>Shoots per explant</th>
<th>Shoots total</th>
<th>Total multiplied explants, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Explants with presented number of shoots</td>
<td>0 1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>1. MS+ 0.5 BAP mg/L</td>
<td>20</td>
<td>0 1 3 7 6 3</td>
<td>67</td>
<td>100</td>
</tr>
<tr>
<td>2. MS+ 3.0 BAP mg/L</td>
<td>20</td>
<td>1 2 3 9 2 3</td>
<td>58</td>
<td>95</td>
</tr>
<tr>
<td>3. MS+ 5.0 BAP mg/L</td>
<td>20</td>
<td>2 3 5 6 4 0</td>
<td>47</td>
<td>90</td>
</tr>
<tr>
<td>4. MS+ 0.5 BAP+1.5 kinetin mg/L</td>
<td>20</td>
<td>3 8 6 1 1 1</td>
<td>32</td>
<td>85</td>
</tr>
<tr>
<td>5. MS+ 0.5 BAP+1.5 zeatin mg/L</td>
<td>20</td>
<td>4 6 9 0 1 0</td>
<td>28</td>
<td>80</td>
</tr>
<tr>
<td>6. MS+ 0.5 BAP+1.5 TDZ mg/L</td>
<td>20</td>
<td>3 8 5 3 0 1</td>
<td>32</td>
<td>85</td>
</tr>
<tr>
<td>7. MS+ 0.5 BAP+0.5 CPPU mg/L</td>
<td>20</td>
<td>9 7 3 0 1 0</td>
<td>17</td>
<td>55</td>
</tr>
<tr>
<td>8. MS mod+ 0.5 BAP+OX</td>
<td>20</td>
<td>11 4 2 2 1 0</td>
<td>18</td>
<td>45</td>
</tr>
</tbody>
</table>

*ox (vitamin C and citric acid 50 mg/L)
conditions, the root formation process was analyzed within 4 weeks. Second type – the other part of young sprouts were placed in compost mixture 1:1 /perlite:peat/ for direct rooting, without passing through a rooting medium (Pittet and Moncousin, 1982). Before placing them in compost mixture they had to be soaked in IBA-0.1 mg/L solution for 1 minute while gently stirring the recipient in which they were treated.

After rooting young plants were transferred in a closed greenhouse under conditions of high humidity 80-90% and at 30-32˚C for 20 days. After a period of annealing during which the temperature and humidity were gradually lowered, the greenhouse was finally opened.

Results and discussion

Suitable explants were obtained from the secondary growth of plants during the period end June - beginning of July, after flowering. Three types of disinfection were researched. A detailed post-analysis determined that the most suitable combination was a 0.2% HgCl₂ solution for 3 minutes, subsequently treated in a 0.5% NaClO₂ solution for 20 minutes and in a 0.25% NaClO solution for 30 minutes. In this case we obtained the maximum number of viable pure explants. In the 0.1% HgCl₂ solution for 5 minutes type, most of the explants did not survive the sterilization process and died. When treated in a 0.5% NaClO solution for 20 minutes, followed by a 0.25% NaClO solution for 30 minutes, most of the explants were found infected. These results are valid for both genotypes (Table 1).

During the multiplication period studied growth regulators were used in different concentrations. The results from the analysis showed that the highest percentage of multiplied explants, as well as the highest number of sprouts per explant, were obtained in a MS medium not changed with a BAP additive, in quantities from 0.5 to 3.0 mg/L. In the course of work it became clear that if BAP quantity was increased or combined with another hormone, the number of sprouts and the total percentage of multiplications diminished. This was even more valid for R3 (Table 2). The relation between the medium variant and the multiplication power is presented in Figure 1.

The rooting process ran equally well on a root formation medium, as well as through direct rooting in compost mixture. When

![Figure 1. Relation between the medium and degree of multiplication](image-url)

Table 3. Rooting process with or without using medium for rooting

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Rooting variant</th>
<th>Amount of used explants</th>
<th>Amount of rooted explant</th>
<th>% of rooting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.MS- without hormones</td>
<td>40</td>
<td>22</td>
<td>55</td>
</tr>
<tr>
<td>Variant I</td>
<td>2.MS+0.1 mg/L IBA</td>
<td>40</td>
<td>36</td>
<td>90</td>
</tr>
<tr>
<td>Using medium for rooting</td>
<td>3. MS+0.1 mg/L IAA</td>
<td>40</td>
<td>18</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>4. MS+0.1 mg/L NAA</td>
<td>40</td>
<td>31</td>
<td>77.5</td>
</tr>
<tr>
<td>Variant II</td>
<td>Soil mix</td>
<td>40</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Direct rooting</td>
<td>Total for the genotype</td>
<td>200</td>
<td>147</td>
<td>73.5</td>
</tr>
<tr>
<td>Variant I</td>
<td>1.MS- without hormones</td>
<td>40</td>
<td>32</td>
<td>80</td>
</tr>
<tr>
<td>Using medium for rooting</td>
<td>2.MS+0.1 mg/L IBA</td>
<td>40</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>3. MS+0.1 mg/L IAA</td>
<td>40</td>
<td>31</td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td>4. MS+0.1 mg/L NAA</td>
<td>40</td>
<td>28</td>
<td>70</td>
</tr>
<tr>
<td>Variant II</td>
<td>Soil mix</td>
<td>40</td>
<td>38</td>
<td>95</td>
</tr>
<tr>
<td>Direct rooting</td>
<td>Total for the genotype</td>
<td>200</td>
<td>169</td>
<td>84.5</td>
</tr>
</tbody>
</table>

Conclusion

The analysis of the results from the conducted research answers several major questions. The initial material should be from elite stock plants grown under controlled conditions. Explants would be nodal segments 1-1.5 cm long with 1 to 2 axillary buds. The most appropriate protocol for sterilization was recognized to be a combination of 0.2% HgCl₂ solution for 3 minutes, followed by a treatment in 0.5% NaClO solution for 20 minutes and in 0.25%
NaClO solution for 30 minutes. During the multiplication period the biggest number of sprouts and the highest percentage of multiplied explants were obtained in MS medium with added BAP in concentration from 0.5 to 3.0 mg/L. The process of root formation did not require in vitro conditions and a rooting medium. Young sprouts could be placed directly in compost mixture and rooted directly under in vivo conditions.

References

Reviews

Problems and achievements of cotton (*Gossypium Hirsutum* L.) weeds control
T. Barakova, G. Delchev

Achievements and problems in the weed control in grain sorghum (*Sorghum Bicolor* Moench.)
G. Delchev, M. Georgiev

Genetics and Breeding

Parthenogenetic responsiveness of sunflower hybrid combinations with expressed tolerance to herbicides
M. Drumeva, P. Yankov

In vitro propagation of oil-bearing rose (*Rosa damascena* Mill.)
V. Badzhelova

Nutrition and Physiology

Variation in the chemical composition and physical characteristics of grain from winter barley varieties
B. Dyulgerova, N. Dyulgerov, D. Dimova

Haematological and serum biochemical indices of broiler chickens fed raw sickle pod (*Senna obtusifolia*) seed meal
C. Augustine, I.D. Kwari, J.U. Igwebuike, S.B. Adamu

Prey size selectivity of pikeperch (*Sander Lucioperca* L.) fed with topmouth gudgeon (*Pseudorasbora Parva* Temminck & Schlegel)
M. Gevezova-Kazakova, M. Yankova, T. Hubenova, A. Zaikov, G. Rusenov

Influence of organic nitrogen amendment, containing amino acids on the cellulase and xylanase, produced by *Trichoderma* spp. isolates
D. Draganova, I. Valcheva, Y. Kuzmanova, M. Naydenov

Production Systems

Justification of a method for determining the moment for switching on the level one signaling of filled grain harvester hoppers
G. Tihanov, B. Kolev, K. Trendafilov, N. Delchev, Y. Stoyanov

Mathematical approaches for assessment and classification of the European Union member states based on the average yield of vegetables for the period 1961-2014
N. Keranova
Present status of Zymoseptoria tritici (Mycospharella graminicola /Fuckel/ Schroter) of the wheat cultures in the Republic of Macedonia
I. Karov, E. Arsov

Agriculture and Environment

Influence of basic agrotechnical activities on the productivity and yield of Triticum monococcum L.
S. Stamatov, K. Uzundzhalieva, E. Valchinova, G. Desheva, P. Chavdarov, B. Kyosev, T. Cholakov, R. Ruseva, N. Velcheva

Avifauna abundance and diversity in Jos wildlife park, Nigeria
B.T. Kwaga, D. Iliya, A. Ali, D. Khobe

Ecological analysis of the flora in the 'Chinarite' protected area - Rodopi municipality, Bulgaria
L. Dospatliev, M. Lacheva

Product Quality and Safety

Food emulsions with amidated pectin from celery (Apium graveolens var. rapaceum D. C.) tubers

Sensory and instrumental texture analysis of Bulgarian commercial pates
M. Tonchev, T. Atanasov, A. Todorova, Ts. Atanasova, N. Shtrankova, M. Momchilova G. Zsivanovits

Short Communication

Influence of elevated platform (wire-mesh or wooden) in the cage on domestic rabbit (Oryctolagus cuniculus) activity
S. Peeva, E. Raichev, D. Georgiev, A. Stefanov
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

- **Journal articles:** Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

- **Books:** Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

- **Book chapter or conference proceedings:** Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

- **Thesis:**

 Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Authors

D. Hristova

Stara Zagora, Bulgaria

References

Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).