AGRICULTURAL
SCIENCE AND TECHNOLOGY

2017

An International Journal Published by Faculty of Agriculture,
Trakia University, Stara Zagora, Bulgaria
Submission of Manuscripts

There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Scope and policy of the journal

Agricultural Science and Technology /AST/ — an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc., AGRIS (FAO) and DOAJ. The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The article is included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

This issue is printed with the financial support by Contract No DNP 05-21/20.12.2016, financed from Fund “Scientific Research” grant Bulgarian scientific Periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu
AGRICULTURAL SCIENCE AND TECHNOLOGY

2017

An International Journal Published by Faculty of Agriculture, Trakia University, Stara Zagora, Bulgaria
Prey size selectivity of pikeperch (*Sander Lucioperca* L.) fed with topmouth gudgeon (*Pseudorasbora parva* Temminck & Schlegel)

M. Gevezova-Kazakova*, M. Yankova, T. Hubenova, A. Zaikov, G. Rusenov

Institute of Fisheries and Aquaculture, 4003, Plovdiv, Bulgaria

(Manuscript received 29 May 2017; accepted for publication 29 July 2017)

Abstract. The aim of this study is to examine the size selectivity of the pikeperch fed with one of the most widespread weed fish in fish farms, such as topmouth gudgeon (*Pseudorasbora parva* Temminck & Schlegel). Topmouth gudgeon (*Pseudorasbora parva* Temminck & Schlegel), separated in two size groups: large - group 1 (body weight of the specimens 8.63 ± 2.68 g, total length 9.58 ± 0.92 cm, and height of the body 2.06 ± 0.33 cm) and small - group 2 (body weight of the specimens 1.10 ± 0.36 g, average total body length of 5 ± 0.62 cm, and height of 0.85 ± 0.13 cm), were used as prey. The experiment was carried out under controlled laboratory conditions, in the course of 40 days, in 7 tanks. One pikeperch and 10 topmouth gudgeons from both size groups, in total 20 preys were placed in each tank. During the experimental period it was observed that pikeperch preferred to feed on smaller individuals, the difference in the number of consumed small and large fish is approximately 2 times (70 to 34, respectively).

Keywords: pikeperch (*Sander lucioperca* L.), prey, topmouth gudgeon (*Pseudorasbora parva* Temminck & Schlegel), size, selectivity, food

Introduction

Predation as a form of relationship between different species is essential for the formation of fish populations. Predators can affect not only species composition, but also the size structure (Bronmark et al., 1995). The presence of predatory fish in water bodies affects significantly the entire ecosystem and can change the feeding behavior or habitat preference of other species (Magnenhagen, 2006; Persson et al., 1996). The direct effect of their presence is expressed in reduction in the number of preys, important in this respect being the selectivity of eating, which is defined as total quality for predators (Beyerle and Williams, 1968; Ivlev, 1977; Hart and Hamrin, 1988; Einfalt and Wahl, 1997).

The interaction between predator and prey in aquatic ecosystems is highly dependent on their size (Paine, 1976; Olson, 1996). According to Nilsson and Bromark (1999), pike (*Esox lucius*) prefers to eat smaller prey when there is such choice presented. It is believed that this is determined by the lower risk of failure to catch them. Those who are larger swim vigorously and cause real danger of kleptoparasitism (Nilsson and Brommark, 1999; 2000; Turesson et al., 2006). The opposite conclusion is reached by Hubenova et al. (2013), who found that pike prefers to feed on larger specimens.

The maximum size of prey that predator may eat depends on the morphological constraints of the oral apparatus (Werner, 1974; Nilsson and Brommark, 2000). In this connection, from entirely anatomical viewpoint the pikeperch has significantly less capacity compared to European pike and Wels catfish.

Essential for the choice of prey, except for size, is the shape and height of the body, swimming speed, accessibility, level of satiation of predators, the existence of competition, etc. According to Petrova et al. (1993; 1993a) the food spectrum of pikeperch is a reflection of the species composition, abundance, biological and ecological status of the ichthyofauna in the environment. In practice, this choice is determined by a complex set of factors that occur in specific conditions.

The issue of selectivity of pikeperch (*Sander lucioperca* L.) with respect to consumed fish species, including in terms of their size, is important not only for the natural reservoirs, but also for the fish farms. In aquaculture pikeperch is cultivated in pond and dam farms as an additional species. It plays the role of a biomeliorator to combat weed species that have negative effect on the yield and economic efficiency of aquaproduction.

In recent years one of the most common and numerous weed species in fish farms is topmouth gudgeon (*Pseudorasbora parva* Temminck & Schlegel), a small-sized fish with a fusiform body, which reaches about 6-8 g weight and 8-10 cm length. It is an invasive species found for the first time in Bulgaria in fish farm "Bear" - Ruse region (Marinov, 1979). It later spread throughout the country, mainly in ponds with standing water - lakes and fishponds. Usually its numbers are large because it spawns and reproduces several times over the summer months.

The aim of this study is to examine the size selectivity of pikeperch fed with one of the most widespread weed fish in fish farms, such as topmouth gudgeon (*Pseudorasbora parva* Temminck & Schlegel).

Material and methods

For the purpose of the experiment one-summer-old pikeperch were used, produced and raised in conditions of polyculture in earth pond. The trial was conducted under controlled laboratory conditions: topmouth gudgeon (*Pseudorasbora parva* Temminck & Schlegel) were used as prey (from two size groups: large - group 1 and small - group 2). The conducting of the experiment under controlled conditions allows ignoring some factors that can directly or indirectly influence the results such as accessibility and number of prey, the availability of other food, competition, etc.

* e-mail: mariagevezova@gmail.com
The experiment was performed in seven tanks with volume of 50 l/tank at a water layer depth of 40 cm and continuous water flow at seven-fold repetition. In each tank one pikeperch was placed with body weight ranging from 167.2 to 261.8 g and 10 specimens from both size groups of tompmouth gudgeon, 20 preys in total. During the experimental period the temperature of the water (°C), the amount of dissolved oxygen (mg l⁻¹), dissolved oxygen (%), electrical conductivity (µS cm⁻¹) and pH were monitored. Before setting the experiment, a representative sample of both prey fish groups was measured for weight (BW, g), maximum length (SL, cm) and height (H, cm).

The weight of the pikeperch was measured individually; predators and preys were matched in size, so that ingestion of the prey posed no problem.

The largest pikeperch used for the purposes of the experiment weighed 261.8 g, and the smallest 167.2 g. The death toll was reported every 10 days.

The collected data was processed statistically using Lidanski (1988).

Results and discussion

The measurements of the dynamics of the main hydro-chemical indicators in the tanks are shown in Table 1. Throughout the experiment the registered fluctuations were in their narrow limits for pikeperch and differences in tanks were insignificant. All parameters were within the limits of the optimum or close to these values, only the water temperature was below the optimum for this species (Hokanson, 1977).

Analysis of the data of the morphological characteristics of the prey fish from the first group showed that the average value of body weight of the individuals was 8.63 ± 2.68 g, total length 9.58 ± 0.92 cm, and height of 0.85 ± 0.13 cm (Table 3).

Statistical processing of the indicators body weight (BW, g), total length (TL, cm) and body height (H, cm) of fish from both size groups showed that the differences are valid: BW: p < 0.001; TL: p < 0.001; H: p < 0.05.

Table 1. Hydro-chemical indicators in the tanks

<table>
<thead>
<tr>
<th></th>
<th>T, °C</th>
<th>O_2, mg.l⁻¹</th>
<th>O_2, %</th>
<th>pH</th>
<th>Electric conductivity (μS.cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank 1</td>
<td>X</td>
<td>15.51</td>
<td>6.19</td>
<td>62.50</td>
<td>7.44</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>13.80</td>
<td>4.40</td>
<td>45.00</td>
<td>7.26</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>16.00</td>
<td>7.30</td>
<td>74.00</td>
<td>7.73</td>
</tr>
<tr>
<td>Tank 2</td>
<td>X</td>
<td>15.48</td>
<td>6.00</td>
<td>60.60</td>
<td>7.49</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>13.90</td>
<td>4.00</td>
<td>41.00</td>
<td>7.30</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>16.00</td>
<td>7.20</td>
<td>73.00</td>
<td>7.78</td>
</tr>
<tr>
<td>Tank 3</td>
<td>X</td>
<td>15.47</td>
<td>6.00</td>
<td>60.70</td>
<td>7.51</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>13.70</td>
<td>3.70</td>
<td>38.00</td>
<td>7.32</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>15.90</td>
<td>7.00</td>
<td>71.00</td>
<td>7.85</td>
</tr>
<tr>
<td>Tank 4</td>
<td>X</td>
<td>15.48</td>
<td>5.97</td>
<td>60.30</td>
<td>7.52</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>13.70</td>
<td>3.60</td>
<td>35.00</td>
<td>7.30</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>16.00</td>
<td>7.10</td>
<td>72.00</td>
<td>7.90</td>
</tr>
<tr>
<td>Tank 5</td>
<td>X</td>
<td>15.42</td>
<td>6.36</td>
<td>64.30</td>
<td>7.55</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>13.50</td>
<td>3.90</td>
<td>39.00</td>
<td>7.39</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>15.90</td>
<td>7.80</td>
<td>79.00</td>
<td>7.91</td>
</tr>
<tr>
<td>Tank 6</td>
<td>X</td>
<td>15.25</td>
<td>5.68</td>
<td>57.33</td>
<td>7.47</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>13.60</td>
<td>4.10</td>
<td>42.00</td>
<td>7.36</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>15.80</td>
<td>6.90</td>
<td>70.00</td>
<td>7.88</td>
</tr>
<tr>
<td>Tank 7</td>
<td>X</td>
<td>15.25</td>
<td>5.67</td>
<td>57.50</td>
<td>7.48</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>13.70</td>
<td>4.50</td>
<td>46.00</td>
<td>7.34</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>15.80</td>
<td>6.70</td>
<td>68.00</td>
<td>7.89</td>
</tr>
</tbody>
</table>
For the three indicators the difference between the groups is reliable with probability 99.9%, allowing differentiating prey fish consumption by pikeperch based on their size-weight differences, while the length and height of the body allows their easier indigestion. This is particularly important given the fact that pikeperch refers to species with relatively limited capacity to feed on larger fish. The maximum length of its prey is about 50% of its own length, (Van Densen 1994; Dörner et al., 2007) while in pike it may exceed 70% of the length of the predator (Zaikov et al., 2006).

At the beginning of the experimental period pikeperch showed some preference to consumption of prey with smaller size (Figure 1). By the 10th day the commonly eaten topmouth gudgeon would be 11 large and 21 small. Most prey from group 1 was eaten in tank 4 - 3 specimens, and from group 2 in tank 1 - 5 specimens.

By the 20th day the total prey fish consumed was 25 large and 47 small fish. In tank 1 and 5 all fish from group 2 were eaten. By the 30th day all the small prey fish from tanks 4, 6 and 7 were indigested, and in tanks 2 and 3 the small fish were eaten by the end of the experimental period.

Upon completion of the experiment it was found that of the 70 large and 70 small topmouth gudgeon from group 1 – 34 specimens were eaten, and from group 2- 70, i.e. the difference was approximately 2 times. The observed in the first ten days tendency of preferred small prey size fish over large remained in all tanks until the completion of the experiment. The results confirm previous research done by Turesson et al. (2002), which found that pikeperch is a selective predator, in terms of size of their prey, by choosing species with smaller sizes.

Conclusion

Throughout the experimental period of 40 days pikeperch preferred to feed on smaller specimens, the difference in the number of consumed small and large fish is approximately 2 times (70 to 34 fish, respectively). The greater affinity of pikeperch to feed on prey with smaller size can be explained by their easier capturing and swallowing. Due to the morphological constraints of the oral apparatus pikeperch swallows with difficulty preys with larger size. In this connection, from entirely anatomical viewpoint pikeperch has significantly less capacity compared to European pike and Wels catfish.

References

Paine RT, 1976. Size-limited predation: an observational and experimental approach with the Mytilus-Pisaster interaction.

Ecology, 57, 858-873.

Agricultural Science and Technology, Vol. 9, No 3, 2017

CONTENTS

Reviews

Problems and achievements of cotton (Gossypium Hirsutum L.) weeds control
T. Barakova, G. Delchev

Achievements and problems in the weed control in grain sorghum (Sorghum Bicolor Moench.)
G. Delchev, M. Georgiev

Genetics and Breeding

Parthenogenetic responsiveness of sunflower hybrid combinations with expressed tolerance to herbicides
M. Drumeva, P. Yankov

In vitro propagation of oil-bearing rose (Rosa damascena Mill.)
V. Badzhelova

Nutrition and Physiology

Variation in the chemical composition and physical characteristics of grain from winter barley varieties
B. Dyulgerova, N. Dyulgerov, D. Dimova

Haematological and serum biochemical indices of broiler chickens fed raw sickle pod (Senna obtusifolia) seed meal
C. Augustine, I.D. Kwari, J.U. Igwebuike, S.B. Adamu

Prey size selectivity of pikeperch (Sander Lucioperca L.) fed with topmouth gudgeon (Pseudorasbora Parva Temminck & Schlegel)
M. Gevezova-Kazakova, M. Yankova, T. Hubenova, A. Zaikov, G. Rusenov

Influence of organic nitrogen amendment, containing amino acids on the cellulase and xylanase, produced by Trichoderma spp. isolates
D. Draganova, I. Valcheva, Y. Kuzmanova, M. Naydenov

Production Systems

Justification of a method for determining the moment for switching on the level one signaling of filled grain harvester hoppers
G. Tihanov, B. Kolev, K. Trendafilov, N. Delchev, Y. Stoyanov

Mathematical approaches for assessment and classification of the European Union member states based on the average yield of vegetables for the period 1961-2014
N. Keranova
Present status of *Zymoseptoria tritici* (*Mycosphaerella graminicola* /Fuckel/ Schroter) of the wheat cultures in the Republic of Macedonia
I. Karov, E. Arsov

Agriculture and Environment

Influence of basic agrotechnical activities on the productivity and yield of *Triticum monococcum* L.
S. Stamatov, K. Uzundzhalieva, E. Valchinova, G. Desheva, P. Chavdarov, B. Kyosev, T. Cholakov, R. Ruseva, N. Velcheva

Avifauna abundance and diversity in Jos wildlife park, Nigeria
B.T. Kwaga, D. Iliya, A. Ali, D. Khobe

Ecological analysis of the flora in the 'Chinarite' protected area - Rodopi municipality, Bulgaria
L. Dospatliev, M. Lacheva

Product Quality and Safety

Food emulsions with amidated pectin from celery (*Apium graveolens* var. *rapaceum* D.C.) tubers

Sensory and instrumental texture analysis of Bulgarian commercial pates
M. Tonchev, T. Atanasov, A. Todorova, Ts. Atanasova, N. Shtrakova, M. Momchilova G. Zsivanovits

Short Communication

Influence of elevated platform (wire-mesh or wooden) in the cage on domestic rabbit (*Oryctolagus cuniculus*) activity
S. Peeva, E. Raichev, D. Georgiev, A. Stefanov
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter-bold, 14/without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. **Tables** should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Todorov N and Mitev J, 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows, IX International Conference on Production Diseases in Farm Animals, September 11–14, Berlin, Germany.

Thesis:

Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods.”