Scope and policy of the journal

Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence.

They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.

The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc., AGRIS (FAO) and DOAJ. The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

This issue is printed with the financial support by Contract No DNP 05-21/20.12.2016, financed from Fund “Scientific Research” grant Bulgarian scientific Periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu
Agriculture and Environment

Influence of basic agrotechnical activities on the productivity and yield of *Triticum monococcum* L.

S. Stamatov*, K. Uzundzhalieva, E. Valchinova, G. Desheva, P. Chavdarov, B. Kyosev, T. Cholakov, R. Ruseva, N. Velcheva

Institute of Plant genetic Resources „Konstantin Malkov“, 2 Druzhba, 4122 Sadovo, Bulgaria

(Manuscript received 7 June 2017; accepted for publication 25 August 2017)

Abstract. The study was conducted during the period 2014 – 2016 in the experimental field of Institute of Plant Genetic Resources, Sadovo. The influence of the period of sowing, the predecessor and the fertilization on the elements of productivity and grain yield per hectare in einkorn wheat were studied. It was established that the structural elements of productivity - number of productive tillers, length of the spike, number of spikelets per spike, mass of central spike, number of grains in central spike, weight of the grains from the central spike are with the highest values in plants grown after predecessor peas, sown in autumn and fertilized with extra nitrogen. With least developed productive capabilities are the plant variants sown in spring after sunflower and without additional fertilization with nitrogen. With proved the biggest impact on grain yield per hectare is the date of sowing. The sources of variation: predecessor and combined effect of factors predecessor x fertilization show equal share of influence on the productivity of einkorn. The results from the study give science-based information on the most favorable time of sowing, fertilizing and predecessor in einkorn.

Keywords: einkorn, structural elements of the productivity, yield, period of sowing, predecessor, fertilizing

Introduction

Einkorn (*Triticum monococcum* L.) belongs to Poaceae, genus *Triticum* (Jukovski, 1957). It refers to a group of diploid wheats (2n=14) with AA structure of the genome. In German and in English it is called “einkorn”, in French "engrain", in Hungarian “alakor”, in Italian “faro”, in Romanian “alac”, and in Russian “odnosrianka". Persival considers that einkorn is a subspecies of *T. aegilopoides* Bal., which is the predecessor of einkorn. Stranski (1929, 1934), who has studied einkorn in Bulgaria, discovered 4 wild and 11 domesticated types, among which some endemic (*var. bulgaricum*, *var. sofianum*) and describes a wide range of varieties.

Currently the interest towards this crop has rapidly increased. *T. monococcum* possesses unique nutritional qualities, which excel the popular cereals with economic value. It contains bigger percentage of proteins, amino acids and microelements (Frégeau-Reid and Abdel-Aal, 2005; Brannon, 2007; Hidalgo et al., 2008; Hidalgo et al., 2009; Asghar et al., 2011). It is easygoing to soil fertility (Castagna et al., 1995; Grausgruber et al., 2004) and in conditions of organic farming is more competitive, since it receives products of specified quality at relatively lower costs. (Uhr et al., 2012; Stamatov et al., 2012).

One of the most attractive aspects of einkorn as an alternative cereal crop is that the food products cause less allergic reactions compared to common wheat. It is established that the gliadin fraction of wheat gluten is responsible for the allergic reactions (D’Egidio et al., 1993). The gluten content in food products, made from einkorn, is significantly less, because it has not been subjected to breeding for improvement of quantity and quality of protein. *T. monococcum* L. possesses valuable traits: ecological plasticity, resistance to stress factors, resistance to some fungal diseases (Grausgruber et al., 2004; Dhalwal et al., 2003; Sodkiewicz et al., 2004; Hai-Chun et al., 2007; Chhuneja et al., 2008; Konvalina et al., 2010). That makes it a suitable gene donor in the breeding of naked seed wheat. By approaching the limits of biological productivity in common and durum wheat, and as a result of global climate change, the interest in this wheat has strongly increased. The reason is the need for a new source material and expansion of the genetic variation.

In Bulgaria the interest towards einkorn is not only because of its high nutritional value and importance as a healthy product, but also because since 2007 the organic production has been subsidized under the Single Area Payment and measure 214 „Agro ecological payments” from the Program for Rural Development for the period 2007-2013, 2014-2020 (http://www.mzh.government.bg). According to unofficial data for 2013 areas occupied with einkorn are about 2000 ha (http://www.dnesbg.com/obshestvo/1-min-dka-s-limets-shite-ima-v-balgariya-do-2020-godina-prognozirat-zemedelisi.html).

The needs of plant breeding and production determine the need of investigations on the influence of the basic agro technical activities on the elements of productivity and yield.

The aim of the current study is to determine the most suitable sowing dates, predecessors and the needs of additional fertilization with N in order to achieve maximum productive capabilities.

Material and methods

The study was made with the local einkorn accession B3E0025.
from the National Genebank in Sadovo. For evaluation of the productive abilities of *T. monococcum* L. by changing the basic agro-technical approaches a field trial in the experimental field of IPGR – Sadovo was made during the period 2014-2016 at meadow-cinnamic vertisol-like soil type.

The block method was used, in 4 repetitions, with 16 m² plots. The accessions were sown at three different periods – autumn, winter and early spring, which means October, January and February. As predecessor crops were used peas and sunflower. Two variants of N fertilization were tested: without additional N fertilization and fertilization with 40 kg/ha active substance during tillering stage. Thus 8 variants were formed with 64 m² each.

The N, P, K soil reserves after peas and sunflower predecessors are shown in Table 1. It can be seen that sunflower had exhausted the P and K in the soil.

In phase full maturity biometric measurements were made on 30 plants of each variant for determining the basic elements of productivity - plant height (cm), total tillering (pcs.), number of productive tillers, spike length (cm), weight of the central spike (g), weight of spikes per plant (g), number of grains in the central spike, weight of the grains in the central spike (g) and weight of the grains per plant (g).

Multi-factor analysis of variance was applied to establish the influence of each of the tested factors on productivity as measured by grain yield per hectare. Statistics was performed with SPSS 13.0 program.

Results and discussion

The analysis of the results (Table 2) shows that the higher plants (116.6 cm) form variants of autumn sowing with predecessor peas, fertilized with additional nitrogen. The lowest are those sown in spring (102.75 cm) after predecessor sunflower and fertilized with additional nitrogen. For the test period most tillers (21.025) are formed by the plants sown in autumn after predecessor peas, without additional quantity of nitrogen fertilizers. The least number of tillers (11.6) is formed by the plants sown after predecessor sunflower without additional amounts of nitrogen. The elements of productivity (number of productive tillers, length of spike, number of spikelets per spike, weight of the central spike, number of grains in the central spike, weight of the grains of the central spike) are with the highest values in plants grown after predecessor peas sown in autumn and fertilized with additional nitrogen. With least developed productive capabilities are the plant variants sown in spring after sunflower and without additional nitrogen.

Grain yield in different variants ranged from 1.341 to 2.723 t/ha (Table 3). The highest yield was achieved in autumn sowing, after the predecessor peas and without further nitrogen fertilization. Nutrition of plants with N fertilizer in tillering stage with 40 kg/ha active substance, sown after the same predecessor had no significant effect on increasing the yield in the three dates of sowing. Cazzato et al. (2013) and Kirchev and Semkova (2016) also reported that nitrogen fertilization has no significant impact on yield in einkorn, while Marrino et al. (2009, 2011) found that einkorn is influenced by nitrogen fertilization. Maneva et al. (2015) determined that nitrogen fertilization exerted weak positive effect on yield of einkorn but they supported the thesis that it is not necessary to fertilize einkorn because it tends to lodge as a result of nitrogen.

The results from the three factor trial show that the predecessors, which severely deplete soils, such as sunflower, are

Table 1. N, P, K soil reserves after peas and sunflower predecessors

<table>
<thead>
<tr>
<th>Predecessor</th>
<th>N, mg/g</th>
<th>P, mg/g</th>
<th>K, mg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peas</td>
<td>0.145</td>
<td>15.03</td>
<td>51.03</td>
</tr>
<tr>
<td>Sunflower</td>
<td>0.146</td>
<td>9.54</td>
<td>39.6</td>
</tr>
</tbody>
</table>

Table 2. Structural elements of production of *T. monococcum* L., depending on the term of sowing, predecessor and nitrogen nutrition

<table>
<thead>
<tr>
<th>Variants</th>
<th>Plant height, cm</th>
<th>Number of tillers</th>
<th>Number of productive tillers</th>
<th>Spike length, cm</th>
<th>Number of spikelets per spike</th>
<th>Weight of the central spike, g</th>
<th>Spike weight, g</th>
<th>Number of grains in the central spike</th>
<th>Weight of the grains in the central spike, g</th>
<th>Weight of the grains, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>112.81</td>
<td>12.77</td>
<td>11.5e</td>
<td>7.45e</td>
<td>25.32</td>
<td>7.73</td>
<td>2.98</td>
<td>23.6e</td>
<td>22.45e</td>
<td>4.06e</td>
</tr>
<tr>
<td>2</td>
<td>110.31</td>
<td>12.01</td>
<td>11.5e</td>
<td>7.35e</td>
<td>25</td>
<td>2.13</td>
<td>2.26</td>
<td>23.12e</td>
<td>21.8</td>
<td>3.99</td>
</tr>
<tr>
<td>3</td>
<td>116.6e</td>
<td>13.56</td>
<td>13.5e</td>
<td>7.74e</td>
<td>26.48</td>
<td>7.86</td>
<td>2.45</td>
<td>24.5</td>
<td>22.5</td>
<td>4.84e</td>
</tr>
<tr>
<td>4</td>
<td>115.68</td>
<td>21.03</td>
<td>18.15</td>
<td>12.52</td>
<td>26.53</td>
<td>12.9</td>
<td>25</td>
<td>12.9</td>
<td>22.5</td>
<td>4.32e</td>
</tr>
<tr>
<td>5</td>
<td>104.63</td>
<td>11.68</td>
<td>10.83</td>
<td>6.48</td>
<td>23.73</td>
<td>0.12</td>
<td>2.26</td>
<td>22.5</td>
<td>22.5</td>
<td>3.61</td>
</tr>
<tr>
<td>6</td>
<td>108.13</td>
<td>12.9</td>
<td>11.78</td>
<td>7.91e</td>
<td>24.15e</td>
<td>0.15</td>
<td>2.98</td>
<td>22.45e</td>
<td>22.45e</td>
<td>4.06e</td>
</tr>
<tr>
<td>7</td>
<td>110.6e</td>
<td>12.55</td>
<td>9.55</td>
<td>11.74e</td>
<td>20.48</td>
<td>5.68</td>
<td>18.5e</td>
<td>18.5</td>
<td>18.5e</td>
<td>2.84</td>
</tr>
<tr>
<td>8</td>
<td>111.68</td>
<td>20.03</td>
<td>17.15</td>
<td>6.23</td>
<td>23.53</td>
<td>0.98</td>
<td>11.39</td>
<td>22.08e</td>
<td>22.08e</td>
<td>5.7e</td>
</tr>
<tr>
<td>9</td>
<td>102.75</td>
<td>13.83</td>
<td>11.45</td>
<td>8.73</td>
<td>24.45</td>
<td>1.22</td>
<td>8.92</td>
<td>22.83e</td>
<td>22.83e</td>
<td>4.46e</td>
</tr>
<tr>
<td>10</td>
<td>105.38</td>
<td>11.6e</td>
<td>9.5e</td>
<td>5.81</td>
<td>23.28</td>
<td>1.02e</td>
<td>7.09</td>
<td>21.48e</td>
<td>21.48e</td>
<td>3.54e</td>
</tr>
<tr>
<td>11</td>
<td>111.5</td>
<td>15.4e</td>
<td>12.75</td>
<td>6.23</td>
<td>22.63</td>
<td>1.1e</td>
<td>10.61e</td>
<td>20.78e</td>
<td>20.78e</td>
<td>5.31e</td>
</tr>
<tr>
<td>12</td>
<td>112.83</td>
<td>15.72</td>
<td>14.4</td>
<td>6.38</td>
<td>24.46</td>
<td>1.08e</td>
<td>16.23</td>
<td>23.05e</td>
<td>23.05e</td>
<td>8.12</td>
</tr>
</tbody>
</table>

Key: 1. predecessor sunflower, autumn sowing, fertilized; 2. predecessor sunflower, autumn sowing, not fertilized; 3. predecessor peas, autumn sowing, fertilized; 4. predecessor peas, autumn sowing, not fertilized; 5. predecessor sunflower, winter sowing, fertilized; 6. predecessor sunflower, winter sowing, not fertilized; 7. predecessor peas, winter sowing, fertilized; 8. predecessor peas, winter sowing, not fertilized; 9. predecessor sunflower, spring sowing, fertilized; 10. predecessor sunflower, spring sowing, not fertilized; 11. predecessor peas, spring sowing, fertilized; 12. predecessor peas, spring sowing, not fertilized.

Means in the same column followed by the same letters are not significantly different (p<0.05) according to Duncan’s test.
The results of the study provide science-based information about the most favorable time of sowing, fertilizing, and predecessor of einkorn. The highest yield of grain per hectare realized in autumn sowing, after precursor peas and without additional introduction of nitrogen. In predecessors which strongly deplete soils, such as sunflower, the autumn sowing is preferable. For all other periods of sowing, after the same predecessor, it is good to add nitrogen fertilizer at a rate of 40 kg/ha active ingredient at tillering stage. The strongest impact on the grain yield has the date of sowing (53.8%). The sources of variation: predecessor and the combined effect of factors predecessor x fertilization demonstrate equal share of influence on the productivity of einkorn.

Conclusion

The current study is financed by the project “Einkorn – ancient innovation II” of Erasmus program.

References

Reviews

Problems and achievements of cotton (*Gossypium Hirsutum* L.) weeds control
T. Barakova, G. Delchev 179

Achievements and problems in the weed control in grain sorghum (*Sorghum Bicolor* Moench.)
G. Delchev, M. Georgiev 185

Genetics and Breeding

Parthenogenetic responsiveness of sunflower hybrid combinations with expressed tolerance to herbicides
M. Drumeva, P. Yankov 190

In vitro propagation of oil-bearing rose (*Rosa damascena* Mill.)
V. Badzhelova 194

Nutrition and Physiology

Variation in the chemical composition and physical characteristics of grain from winter barley varieties
B. Dyulgerova, N. Dyulgerov, D. Dimova 198

Haematological and serum biochemical indices of broiler chickens fed raw sickle pod (*Senna obtusifolia*) seed meal
C. Augustine, I.D. Kwari, J.U. Igwebuike, S.B. Adamu 203

Prey size selectivity of pikeperch (*Sander Lucioperca* L.) fed with topmouth gudgeon (*Pseudorasbora Parva* Temminck & Schlegel)
M. Gevezova-Kazakova, M. Yankova, T. Hubenova, A. Zaikov, G. Rusenov 209

Influence of organic nitrogen amendment, containing amino acids on the cellulase and xylanase, produced by *Trichoderma* spp. isolates
D. Draganova, I. Valcheva, Y. Kuzmanova, M. Naydenov 213

Production Systems

Justification of a method for determining the moment for switching on the level one signaling of filled grain harvester hoppers
G. Tihanov, B. Kolev, K. Trendafilov, N. Delchev, Y. Stoyanov 218

Mathematical approaches for assessment and classification of the European Union member states based on the average yield of vegetables for the period 1961-2014
N. Keranova 223
Present status of *Zymoseptoria tritici* (*Mycosphaerella graminicola* /F beckl/ Schroter) of the wheat cultures in the Republic of Macedonia
I. Karov, E. Arsov

Agriculture and Environment

Influence of basic agrotechnical activities on the productivity and yield of *Triticum monococcum* L.
S. Stamatov, K. Uzundzhalieva, E. Valchinova, G. Desheva, P. Chavdarov, B. Kyosev, T. Cholakov, R. Ruseva, N. Velcheva

Avifauna abundance and diversity in Jos wildlife park, Nigeria
B.T. Kwaga, D. Iliya, A. Ali, D. Khobe

Ecological analysis of the flora in the 'Chinarite' protected area - Rodopi municipality, Bulgaria
L. Dospatliev, M. Lacheva

Product Quality and Safety

Food emulsions with amidated pectin from celery (*Apium graveolens* var. *rapaceum* D. C.) tubers

Sensory and instrumental texture analysis of Bulgarian commercial pates
M. Tonchev, T. Atanasov, A. Todorova, Ts. Atanasova, N. Shtrankova, M. Momchilova G. Zsivanovits

Short Communication

Influence of elevated platform (wire-mesh or wooden) in the cage on domestic rabbit (*Oryctolagus cuniculus*) activity
S. Peeva, E. Raichev, D. Georgiev, A. Stefanov
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices)

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What is the purpose of the study? What is the method? What will be the consequences for the science and practice? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted. Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al.(2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Thesis:

Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Example:

> **Books:**

> **Book chapter or conference proceedings:**

> **Thesis:**

> Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.