Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: DOI, EBSCO Publishing Inc., AGRIS (FAO) and DOAJ. The journal is accepted to be indexed with the support of a project № BG051PO001-3.3.05-0001 “Science and business” financed by Operational Programme “Human Resources Development” of EU. The title has been suggested to be included in SCOPUS (Elsevier) and Electronic Journals Submission Form (Thomson Reuters).

The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This issue is printed with the financial support by Contract No DNP 05-21/20.12.2016, financed from Fund “Scientific Research” grant Bulgarian scientific Periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student’s campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu

Editor-in-Chief
Georgi Petkov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria
E-mail: gpetkov@af.uni.sz.bg

Co-Editor-in-Chief
Dimitar Panayotov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections
Genetics and Breeding
Tsanku Yablanski (Bulgaria)
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothchild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Stoicho Metodiev (Bulgaria)
Bojin Bojinov (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Ivan Varlyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Bogdan Szostak (Poland)
Banko Banev (Bulgaria)
Georgi Zhelyazkov (Bulgaria)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)
Roumiana Tsenkova (Japan)

English Editor
Yanka Ivanova (Bulgaria)
Hordein polymorphism between spring barley cultivars by SDS-PAGE electrophoresis

N. Neykov¹, S. Doneva²

¹Department of Plant Genetic Resources, Institute of Plant Genetic Resources, 4122 Sadovo, Bulgaria
²Dobrudzha Agricultural Institute, 9521 General Toshevo, Bulgaria

(Manuscript received 27 April 2017; accepted for publication 28 September 2017)

Abstract. In this study reserve endosperm proteins, hordeins of seven spring barley cultivars with different origin: Zernogradskii (Russia), Bodega, Fink, Scarlett and Barke (Germany), Josefin and Astoria (France) were fractionated and characterized by SDS-PAGE electrophoresis. On the basis of the obtained spectra 19 bands (D + C + B) with different relative electrophoretic mobility and intensity were identified. The electrophoresis profiles of the groups D-, C- and B- hordein are designated as separate types (models) using the index corresponding to hordein blocks. We have established one profile type for D-hordein (D1), two- for C-hordein (C1, C2), and five - for B-hordein (B1, B2, B3, B4, B5). Based on these results hordein formulas (configurations) of accessions are constructed, which enable the expression of specific varietal characteristics and prove the existence of the inter allelic variation (hordein polymorphism) due to the presence or absence of protein components and their different electrophoretic mobility in the profiles of D-, C- and B-hordein.

Keywords: spring barley, storage proteins, hordein types, intervarietal polymorphism, SDS-PAGE

Introduction

The use of biochemical markers of genetic control of useful traits is increasingly used in the breeding of barley (Jones, 1982; Hauser et al., 1982; Stoyanova and Popova, 2002). As a result of long research it was found, that electrophoretic spectra of reserve proteins in barley - hordeins - have been divided into three groups on the basis of their electrophoretical mobility and amino acid composition (Shewry and Milfin, 1985). D-hordeins have the highest molecular weight (105 kD); they are characterized by a high amino acid (glutamine, glicine and proline) content (Shewry and Tatham, 1990). Synthesis of these hordeins is encoded by the Hor 3 locus located on the long arm of chromosome 1H(5) (Kreis et al., 1984). C-hordeins (50–80 kD), rich in glutamine, phenylalanine and proline, and the major B-hordeins (36–45 kD), rich in glutamine, are encoded by the Hor 1 and Hor 2 loci, respectively, both located on the short arm of chromosome 1H(5) (Shewry and Milfin, 1985). The advantages of hordeins for studying the genetic diversity in barley have been described by many authors (Pomortsev et. al., 2002; Výhnanek et al., 2003). The barley storage protein hordein is characterized by a high level of polymorphism (Dimova, 2011; Mihova et al., 2012).

By using electrophoretic SDS-PAGE method spare proteins can be separated into individual fractions (Dimova et al., 2010; Dimova, 2011; Mihova et al., 2012), each of which has a specific relationship with the economic valuable traits. Their expression is stable and independent of environmental conditions (Konarev, 2000; Todorov et al., 2002; Todorov, 2006).

The purpose of this study is to establish hordein polymorphism between seven spring barley cultivars with different origin by SDS-PAGE.

Material and methods

The material object of this study were seven cultivars of spring barley showing a set of valuable traits and qualities (yield, number of fertile tillers per plant, length of spikes, number of grains per spike, number of sterile spikes, mass of grain per spike, mass of grain per plant, mass of 1000 grains, complex disease resistance, vegetative period and resistance to lodging), during the period of study 2012-2015. They are of different origin: Zernogradskii from Russia, Bodega, Fink, Scarlett and Barke from Germany, Josefin and Astoria from France (Table 1).

Table 1. Origin and variety of seven spring cultivars Hordeum vulgare L. subsp. distichon (L.) KOERN

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Origin</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarlett</td>
<td>Germany</td>
<td>nutans</td>
</tr>
<tr>
<td>Bodega</td>
<td>Germany</td>
<td>nutans</td>
</tr>
<tr>
<td>Fink</td>
<td>Germany</td>
<td>erectum</td>
</tr>
<tr>
<td>Barke</td>
<td>Germany</td>
<td>nutans</td>
</tr>
<tr>
<td>Zernogradskii</td>
<td>Russia</td>
<td>nutans</td>
</tr>
<tr>
<td>Josefin</td>
<td>France</td>
<td>nutans</td>
</tr>
<tr>
<td>Astoria</td>
<td>France</td>
<td>nutans</td>
</tr>
</tbody>
</table>

Table 2. Origin of Boletus edulis species

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarlett</td>
<td>Germany</td>
</tr>
<tr>
<td>Bodega</td>
<td>Germany</td>
</tr>
<tr>
<td>Fink</td>
<td>Germany</td>
</tr>
<tr>
<td>Barke</td>
<td>Germany</td>
</tr>
<tr>
<td>Zernogradskii</td>
<td>Russia</td>
</tr>
<tr>
<td>Josefin</td>
<td>France</td>
</tr>
<tr>
<td>Astoria</td>
<td>France</td>
</tr>
</tbody>
</table>

* e-mail: neykov.nikolay@gmail.com
Separation of reserve proteins was performed in the laboratory of biochemistry of Dobrudzha Agricultural Institute General Toshevo in 201. The analyses were performed on single grains obtained by self-pollination under the isolator. Attached is a vertical SDS-PAGE electrophoresis.

Hordein extraction is carried out using the method of Singh et al. (1991). Each grain was ground to fine flour (with a pestle in a porcelain mortar), the embryo being previously removed by using a scalpel. Ground kernels were transferred to 1.5 ml Eppendorf tubes. Extraction buffer 0.1 ml 50% (v/v) propanol, 0.08 M Tris – HCl, pH 8.0, containing 1% (w/v) freshly added dithiothreitol (DTT) was added to each tube for the extraction of storage protein of barley (hordein). In the absence of DTT relatively less of the medium molecular weight of hordein bands were extracted especially from seed containing high level of nitrogen. Each sample is mixed for a few seconds of vortex in order to facilitate homogenization and extraction. After incubation for 1 hour at 65°C to each micro tube Eppendorf type 0.1 ml 50% (v/v) propanol was added containing 1.4% (v/v) freshly added 4-vinylpyridine (VP). In this way alkylation of SH-groups was performed in the samples. After incubation for 1 hour at 65°C and centrifugation for 10 minutes at 12000 g, 0.2 ml of each clear supernatant was transferred to a new Eppendorf and 0.2 ml of a solution (sample buffer) containing 2% SDS, 0.08 M Tris - HCl (pH 8.0), 40% glycerol and 0.02% bromophenol blue was added to it. The samples were mixed, incubated for 1 hour at 65°C, centrifuged at 12000 g for 10 minutes, and then they can be used for SDS-PAGE analysis.

The extraction procedure used is carried out in several stages to achieve maximum extraction of alternative endosperm proteins (hordein). Even clearer electropherograms were obtained after further alkylation of the protein molecules prior to being treated with SDS. The main advantage of SDS-PAGE electrophoresis is that it allows simultaneous separation of the B-, C- and D-hordein.

Staining of the gels was performed with a 1% solution of Coomassie brilliant blue (CBB) R 250 in acetic acid, methanol and water at the ratio (1:5:4) overnight. Discoloration of the gel plates was carried out with a solution of acetic acid, methanol, distilled water (1:2:7). Bleach was changed repeatedly to clear the background, then gel plates were scanned.

The gel system adapted was the one described by Laemmli (1970) with some modifications. 12% acrylamide separating gel (pH 8.0) and acrylamide stacking gel (pH 6.8) were used. Forty microliter Temed and 100% 10% APS were used as catalysts. A thirty sample well former (0.75 mm perspex comb) was inserted into the stacking gel and left to polymerize. Hordein extracts from individual kernels (40) were loaded into each sample well with a micropipette. SDS-PAGE was performed at a constant current of 20 mA per plate at room temperature for 18-20 hours. Hordein patterns were classified using the Lallemand–Briand system with modifications (Lallemand and Briand, 1990). Hordein formulas were constructed according to Dimova (2011).

Results and discussion

As a result of the electrophoretic analysis 19 bands with different relative electrophoretic mobility were established. One was identified in the area of D-hordein, three in the area of the C-hordein and fifteen in the area of the B-hordein (Figure 1). The electrophoresis profiles of the D-, C- and B-hordein were indicated by using indices corresponding to the identified hordein blocks (Figure 2). There are 8 types of alternative profile endosperm proteins in the tested cultivars (Table 2, Figure 2). Clearly visible is one profile type for D-hordein (D1), two - for C-hordein (C1, C2), and five - for B-hordein (B1, B2, B3, B4, B5).

There are no identified allelic differences between D-hordein profiles (Hor 3) of the analyzed varieties - Zernogradskii, Bodega, Fink, Scarlett, Barke, Josefin and Astoria, (Table 2, Figure 1, Figure 2). In a study of Nordic electropherograms of barley cultivars the same pattern of the D-hordein was identified for all (Peltonen et al., 1994). The lack of differences between D-hordein profiles of barley cultivars was reported at a later stage in the study by Leistrumati and Paplauskien (2007).

In the area of C-hordein (Hor 1) three band are expressed with different electrophoretic mobility and intensity, two of which are common for hordein models (C1, C2). The electrophoretic profile, type C1, containing two minor and one well expressed subunits, is
The assessment of hordein composition proved the existence of 8 hordein profile types in the tested samples - D1, C1, C2, B1, B2, B3, B4, B5. The analysed spring barley cultivars - Zernogradskii, Bodega, Fink, Scarlett, Barke, Josefin and Astoria have identical profile model of the D-hordein – D1. In comparison with the cultivars Zernogradskii, Bodega and Fink, which have profile type C1, four accessions - Scarlett, Barke, Josefin and Astoria have profile type C2. All cultivars are characterised by a high degree of polymorphism of B-hordein, wherein five different profile types were identified - B1, B2, B3, B4 and B5. The results of electrophoretic analysis and design hordein formulas for each cultivar show that, on the one hand, they are homogeneous, i.e. each variety is characterized only by a formula. On the other hand, intervarietal polymorphism exists, i.e. cultivars Scarlett and Astoria with the same hordein formula are different from the cultivars Zernogradskii, Bodega, Fink, Barke and Josefin, which have specific hordein formulas.

Table 2. Profile types (hordein models) and frequency (%) occurring in barley cultivars.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Profile type</th>
<th>Cultivar</th>
<th>Frequency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hor 1</td>
<td>C1</td>
<td>Zernogradskii, Bodega, Fink</td>
<td>43.00</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>Scarlett, Barke, Josefin, Astoria</td>
<td>57.00</td>
</tr>
<tr>
<td>Hor 2</td>
<td>B1</td>
<td>Zernogradskii</td>
<td>14.30</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>Bodega, Barke</td>
<td>28.60</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>Fink</td>
<td>14.30</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>Scarlett, Astoria</td>
<td>28.60</td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>Josefin</td>
<td>14.30</td>
</tr>
<tr>
<td>Hor 3</td>
<td>D1</td>
<td>Zernogradskii, Bodega, Fink, Scarlett, Barke, Josefin, Astoria</td>
<td>57.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43.00</td>
</tr>
</tbody>
</table>

Table 3. Hordein formulas (configuration) of the tested varieties of barley

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Hordein formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarlett, Astoria</td>
<td>C2 B4 D1</td>
</tr>
<tr>
<td>Zernogradskii</td>
<td>C1 B1 D1</td>
</tr>
<tr>
<td>Bodega</td>
<td>C1 B2 D1</td>
</tr>
<tr>
<td>Fink</td>
<td>C1 B3 D1</td>
</tr>
<tr>
<td>Barke</td>
<td>C2 B2 D1</td>
</tr>
<tr>
<td>Josefin</td>
<td>C2 B5 D1</td>
</tr>
</tbody>
</table>

References

Protein seeds as markers in resolving the problems of plant genetic resources. Cytology and Genetics, 34, 91-104 (Ru).

Todorov ID, 2006. Study on grain storage proteins and their use as genetic markers in wheat breeding. Thesis for DSc, Dobrudzha Agricultural Institute, General Toshevo (Bg).

Genetics and Breeding

Variation in the agronomic and morphological traits in spring barley
N. Dyulgerov, B. Dyulgerova

Study on the loss of accuracy of AC method for milk yield control in sheep
D. Dimov, P. Zhelyazkova, A. Vuchkov

Hordein polymorphism between spring barley cultivars by SDS-PAGE electrophoresis
N. Neykov, S. Doneva

Nutrition and Physiology

Comparative study of rapeseed, monofloral types and multifloral honey by some physico-chemical parameters
I. Zhelyazkova, S. Lazarov

Body condition score, nonesterified fatty acids and beta-hydroxybutyrate concentrations in goats with subclinical ketosis
V. Marutsova, R. Binev

Production Systems

Lucrative status of improved dual purpose cowpea (*Vigna unguiculata* L., Walp) in Damboa, Borno State, North-Eastern Nigeria
B.H. Gabdo

Study on the emptying time of grain harvester hoppers
K. Trendafilov, N. Delchev, B. Kolev, G. Tihanov

Length of the growing season and yield in *Triticum monococcum* L., in accordance with the growing conditions
S. Stamatov, E. Valchinova, G. Desheva, K. Uzundzhalieva, P. Chavdarov, T. Cholakov, B. Kyosev, R. Ruseva, N. Velcheva

Productivity of durum wheat cultivar Predel at nitrogen-phosphorous fertilization
L. Plescuta

Effect of the herbicide treatment dose on the weed infestation in common winter wheat
Z. Petrova

Evaluation of some technological properties of Caucasian ram wool
D. Pamukova, G. Staykova, N. Stancheva, D. Panayotov
Agriculture and Environment

Saved CO\textsubscript{2} emissions by using renewable sources for hot water yield in Bulgarian dairy farms

Inventory of the legal base for reclamation of lands disturbed by open-cast mining in Bulgaria
M. Banov, V. Tzolova, I. Kirilov

Taxonomic composition of phytoplankton in Black Sea area in front of the Cape Galata (2008-2016)
D. Klisarova, D. Gerdzhikov

Biodiversity of the macrozoobenthos in some protected marine areas along Bulgarian Black Sea coast
E. Petrova, S. Stoykov

Heavy metals in organs of gudgeon \textit{(Gobio gobio L.)} from Vardar River, R. Macedonia
R. Nastova, V. Kostov, I. Uslinovska

Product Quality and Safety

Mathematical methods for assessment and analysis of honey yield data for Bulgaria and the European Union for the period 1961-2014
N. Keranova

Carcass traits and meat quality of different slow growing and fast growing broiler chickens
M. Oblakova, N. Mincheva, P. Hristakieva, I. Ivanova, M. Lalev, Sv. Georgieva

Role and importance of the awareness for whey in dairy sector at an international level
M. Yılmaz, H. Celik, A.D. Karaman, K. Celik
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices). The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any). References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted. Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

Animal welfare