Scope and policy of the journal

Agricultural Science and Technology (AST) - an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts

There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student’s campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu
Production Systems

Economic efficiency of fattening on different genotypes of slow-growing and fast-growing broiler chickens

M. Oblakova*, Y. Popova, P. Hristakieva, N. Mincheva, M. Lalev

Agricultural Institute, 6000 Stara Zagora, Bulgaria

(Manuscript received 21 June 2017; accepted for publication 16 January 2018)

Abstract. In the present study six lines from the National Gene Pool (Bulgaria) were used, four of which line NG (New Hampshire G), line E (Barred Plymouth Rock), line Ss (Sussex) and line F (NG x Red Rhode Island) as maternal forms in the crossing schedule and two sire lines, meat type line L (White Plymouth Rock) and line M (Cornish), for production of slow-growing broilers. The effect of genotype on meat quality traits was studied with 5 groups of 150 unsexed day-old chicks from each genotype, and after the manifestation of sexual dimorphism – male and female chickens at 70 and 84 days of age. In valuation on revenues and costs of the fattening of the compared groups current prices at the time of the experiment were used. Cost of feed is determined according to the actual feed. In determining the economic efficiency of fattening, three variants of sale prices per kg of meat - 3.60 BGN/kg, 4.65 BGN/kg and 5.30 BGN/kg have been analysed. The rate of profitability is a synthetic indicator for economic efficiency, calculated by the formula: NP = (Profitability / Production costs) * 100, %. Feed expenses for experimental group I were lowered by 22.8%, while in groups II, III, and IV- by 13.46%, 9.42% and 9.05%, respectively, compared to group V, which registered the highest consumption of feed in the amount of 5.52 BGN. The share of feed expenses in group I was 53.45% of total expenses, and in groups II, III, and IV group they were 59.88%, 56.30%, 57.50%, and 56.87%, respectively. The highest profits per the accepted sale prices were observed in group V- 10.71 BGN, 13.68 BGN and 15.52 BGN, respectively, followed by group IV with 8.56 BGN, 10.92 BGN, and 12.38 BGN, respectively. At a level of sale prices of 3.60 BGN/kg a positive value of profitability was registered for the fattening of chickens from group V - 16.03%. In all other groups, the profitability norm was negative. At a level of sale prices of 4.65 BGN/kg, the highest profitability was observed in the chickens of group V - 48.21%, followed by group IV - 25.37%, while the lowest cost efficiency was in group III - 4.24%. In the variant with a sale price of 5.30 BGN/kg, the profitability norm was the highest in group V - 68.14%, followed by group IV - 42.13% and group II - 40.96%, while the lowest level was in group III - 18.21%.

Keywords: broiler chickens, slow-growing, productivity, feed conversion, economic efficiency, profitability

Introduction

Throughout the years there have been different opinions regarding the content of the term "broiler". With the great achievements in the field of genetics during the 1990s, a trend emerged for the production of heavier broilers, 1.8-2.3 kg, as well as an increase in the size of deboned meat packages (Vanchev, 1989). Broiler production was related to relatively high losses from mortality due to cardiovascular problems in birds. On one hand, this causes economic losses, and on the other, it reduces the birds’ welfare. It is known that broiler combinations with lower growth rates and higher feed conversion are used in practice, due to which they are less susceptible to cardiovascular diseases (Van Harm and Van Middelkoop, 2001). Animal breeders can keep such birds, yet it is obvious that the produce’s value would increase. A Dutch study on the future of poultry production recommended to select a type of broiler that will grow slower than the contemporary commercial lines, yet faster than the organic and "Label Rouge" type broilers (Van Harm and Van Middelkoop, 2001).

Customers are more and more often interested in naturally produced or eco-friendly products, produced by systems ensuring good welfare and health for the birds (Sundrum, 2001; Owens et al., 2006). For broiler chickens bred in extensive systems, consumers’ demand and consumption are per whole body and customers are willing to pay a higher price (Zanusso and Dionello, 2003). In fact, there is a consensus that organic chicken meat is safer and more nutritional than that of conventional broilers, and therefore an increasing number of consumers are prone to pay a higher price for certified chicken meat (Magdeliane and Bloch, 2004; Crandall et al., 2009).

The European market of slow-growing broilers makes up 30%. In some countries, such as France and Portugal, owners invest into this product in order to obtain quality certificates. Studies are conducted on the productivity of these birds, the economic efficiency of their production, as well as the productive processes themselves. These special poultry products have had a longer history in Europe. One of the most successful productive systems is French – Label Rouge, which requires access to free open space and has taken over 30% of the French poultry products market, despite the twice lower cost of conventional poultry farming produce (Westgren, 1999; Fanatiko and Born, 2001).

Numerous slow-growing genotypes are available in Europe and their efficiency is lower than the fast-growing ones. The slow-growing types are better adapted to such breeding systems and the meat quality is more suitable for the gourmet market (Castellini et al., 2002; Gordon and Charls, 2002). Scientific studies are needed to determine the fitness of fast- and slow-growing genotypes towards organic systems for breeding and customer acceptability. The more in-depth studying of the interaction among the factors of genotype,
feeding, density, environment and grazing would help improve the breeding of free-range birds.

Customers prefer birds with more white meat, thighs, legs (Sauza, 2004). Fast-growing broilers bred in semi-intensive systems give a higher yield of white meat and legs than slow-growing ones (Fanatîko et al., 2005). There are also differences between the two sexes – the males have better developed thighs while the females - breast muscles (Takahashi, 2006). Westgren (1999), Fanatîko and Born (2001) used fast-growing broilers for breeding under the Label system, as well as the European programmes for organic production (EEC, 1991). There is a possibility for fast-growing broilers of this type to reach high live weight.

In Europe, a growing number of customers are liable to pay higher prices for ecologically produced animal products (Bennet, 1996). The production of organic animal produce is regulated by EC Regulation No. 1804/1999, which includes specifications for the conditions of keeping, feeding, breeding, reproduction and veterinary care. With regard to the choice of breed, the regulation indicates that their adaptability to the local conditions, vitality and diseases resistance have to be taken into consideration.

In the USA, broilers of the fast-growing genotype are used in systems with free outdoor access and extensive production systems. Considering the fast-growing broiler specific predisposition to illnesses, the usage of slow-growing broiler chickens is recommended for a period of no less than 81 days. In practice, in the USA fast-growing chickens are primarily used for organic production, whereas European producers tend to use slow-growing genotypes leading to lower body weights at the end of fattening because the fast-growing chickens reach slaughter age after 81 days of age, as prescribed by EC Regulation No. 889/2008 (Bogosavljević-Bošković et al., 2012).

The market for organic products has grown by 20% over the last few years in the USA (ERS, USDA, 2002) and domestic birds are a part of this trend. The production of organic animal products is accompanied by natural and organic systems whose goal is to avoid the usage of additives from animal products and antibiotics, i.e. to use 100% natural biological ingredients - without synthetic pesticides and herbicides. Free access for the birds to open space is required.

Attempts to use French breeder forms for production of slow-growing chickens have been made in Bulgaria as well. A commercial breeding farm of the Agricultural Institute, Stara Zagora. Six original lines from the National Gene Pool were used to produce experimental broiler chickens: line Ss, line E, line NHG, line F from the all-purpose type were used as maternal forms. The sire line - line M (Cornish) was selected in line with the main purpose: production and investigation of production performance of slow-growing broiler chickens with excellent growth performance, good meat production and quality. It is used for production of conventional broilers together with line L (White Plymouth Rock). Both are from the meat production type.

The five broiler genotypes (4 slow-growing and 1 fast-growing) were obtained using the following breeding schedule:

I. ♂ M x ♀ Ss
II. ♂ M x ♀ E
III. ♂ M x ♀ NHG
IV. ♂ M x ♀ F
V. ♂ M x ♀ L

In order to study the influence of genotype on meat traits, five groups of 150 unsexed one-day-old chickens from each genotype were formed, marked and vaccinated against Marek's disease and after expression of the sexual dimorphism divided per sex. They were kept under an indoor floor system, on a deep permanent litter of woodchips. The chickens from each group were kept under the same conditions, in the same room, in accordance with the technological requirements for feeding and rearing applied at the poultry farm of the Agricultural Institute. They were provided constant access to compound feed prepared at the Institute's feed shop, coordinated with the birds’ age and category. Their feeding was conducted per schedule, providing the necessary nutrients for each fattening period – starter (1-14 day), grower (14-28 day), and finisher (28-84 day).

The nutritional value of compound feeds are listed in Table 1 (AOCA, 1996).

Live weight was monitored via individual weighing at the ages of 1, 14, 28, 42, 56, 70, 84 days. Mortality of chickens was registered daily. Feed intake was determined by periods. Towards the end of the experiment a slaughter analysis was conducted with three

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Starter 1-14 day</th>
<th>Grower 14-28 day</th>
<th>Finisher 28-84 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein, %</td>
<td>21.16</td>
<td>19.37</td>
<td>18.77</td>
</tr>
<tr>
<td>Crude fat, %</td>
<td>8.18</td>
<td>5.92</td>
<td>5.90</td>
</tr>
<tr>
<td>Metabol. energy, kcal/kg</td>
<td>1927.77</td>
<td>2148.15</td>
<td>2194.26</td>
</tr>
<tr>
<td>Crude fibre, %</td>
<td>4.45</td>
<td>4.11</td>
<td>4.12</td>
</tr>
<tr>
<td>Ca, %</td>
<td>0.97</td>
<td>0.90</td>
<td>0.78</td>
</tr>
<tr>
<td>Digestible phosphorus, %</td>
<td>0.806</td>
<td>0.45</td>
<td>0.69</td>
</tr>
<tr>
<td>Methionine, %</td>
<td>0.46</td>
<td>0.44</td>
<td>0.38</td>
</tr>
<tr>
<td>Lysine, %</td>
<td>1.19</td>
<td>1.11</td>
<td>0.98</td>
</tr>
</tbody>
</table>
female and three male broilers from each genotype with a live weight corresponding to the group average. After 12 hours of fasting the birds were stunned and slaughtered, in accordance with the requirements of Regulation No. 22/14.12.2005 on the reduction to a minimum of animals’ suffering during slaughter. The live weight after a 12-hour fasting was determined, as well as the mass of the grill, the separate body parts (breasts, thighs, wings), of the edible offal (heart, liver, gizzard), as well as the mass of the abdominal fat. On the grounds of this, the slaughter yield and the separate body cuts were calculated.

While evaluating the profits and expenses from the fattening of the compared groups, the methodical approach of Stoimenov et al. (1997), Kaitazov et al. (2000) and Hristakieva, (2006) was used, along with the current prices at the time of conducting the experiment. The feed expenses were determined per the actual feeding. The other expenses (labour, electricity, treatment, depreciation, etc.) were calculated on the grounds of reality, including the costs, norms and pricelists of the Agriculture Institute - Stara Zagora, and they were distributed per single chicken in accordance with the length of the fattening period. Three variants of sale prices for a kilogram of poultry meat were analysed while determining the economic efficiency of fattening: 3.60, 4.65 and 5.30 BGN/kg; the 3.60 BGN/kg being the country average price for wholesale refrigerated meat. Chickens of the DUC brand are sold 15% more expensive due to genetic factors and their slaughter quality – the so-called slow-growing chickens. Therefore, their economic parameters were hypothetically calculated at a price of 5.30 BGN/kg.

The profitability norm is a synthetic parameter of economic efficiency. It was calculated per the following formula:

\[Hp = \frac{\text{Profit}}{\text{Production expenses}} \times 100, \% \]

The results were submitted to statistical analysis (ANOVA/MANOVA and LSD post hoc test) to determine the effect of the genotype and the sex using Statistica 8 software (StatSoft, 2009).

Results and discussion

The value level of broiler production is affected by numerous factors, such as the birds' genetic qualities for high growth intensity and conversion of combined feed; the quality and cost of the combined feed; the viability and cost of the hybrid chickens, the expenses for maintaining animal hygienic and technological parameters, lighting, heating, ventilation, timely sale of the ready birds, the extent of work force utilisation (Stoimenov, 1976).

When analysing the feed expenses as part of the production expenses (Table 2) it was determined that it was the highest in group V, followed by group III and group IV, 5.52 BGN, 5.02 BGN, and 5.00 BGN, respectively. The groups with the lowest feed expenses were I and II, 4.26 BGN and 4.78 BGN, respectively. Similar results in this regard were established by Aleksieva (2004) and Ivanova (2015) in broiler chickens. The observed differences were explained by the variations in the amounts of feed in the separate groups during the different stages of fattening. The feed expenses in test group I were lower by 22.8%, and in groups II, IV, and III - by 13.48%, 9.42%, and 9.05%, respectively, compared to group V, which registered the highest feed consumption in the amount of 5.52 BGN.

Table 3 presents the production expenses from the fattening of the birds included in the experiment. Apart from the feed expenses, all other expenses were constant for all groups, since they were regarded were established by Aleksieva (2004) and Ivanova (2015) in broiler chickens. The observed differences were explained by the variations in the amounts of feed in the separate groups during the different stages of fattening. The feed expenses in test group I were lower by 22.8%, and in groups II, IV, and III - by 13.48%, 9.42%, and 9.05%, respectively, compared to group V, which registered the highest feed consumption in the amount of 5.52 BGN.

<table>
<thead>
<tr>
<th>Feed expense</th>
<th>I Group</th>
<th>II Group</th>
<th>III Group</th>
<th>IV Group</th>
<th>V Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter</td>
<td>184.19</td>
<td>176.38</td>
<td>142.798</td>
<td>215.65</td>
<td>265.10</td>
</tr>
<tr>
<td>BGN</td>
<td>0.17</td>
<td>0.16</td>
<td>0.13</td>
<td>0.20</td>
<td>0.24</td>
</tr>
<tr>
<td>Grower</td>
<td>816.9</td>
<td>957.46</td>
<td>774.66</td>
<td>1017.21</td>
<td>879.6</td>
</tr>
<tr>
<td>BGN</td>
<td>0.65</td>
<td>0.77</td>
<td>0.62</td>
<td>0.82</td>
<td>0.70</td>
</tr>
<tr>
<td>Finisher</td>
<td>4920.67</td>
<td>5492.87</td>
<td>6103.86</td>
<td>5663.6</td>
<td>6541.14</td>
</tr>
<tr>
<td>BGN</td>
<td>3.44</td>
<td>3.85</td>
<td>4.27</td>
<td>3.97</td>
<td>4.58</td>
</tr>
<tr>
<td>Total</td>
<td>5921</td>
<td>6627</td>
<td>7021.31</td>
<td>6896.6</td>
<td>7685.84</td>
</tr>
<tr>
<td>BGN</td>
<td>4.26</td>
<td>4.78</td>
<td>5.02</td>
<td>5.00</td>
<td>5.52</td>
</tr>
<tr>
<td>Compared to group V, %</td>
<td>22.8</td>
<td>13.48</td>
<td>9.05</td>
<td>9.42</td>
<td>100</td>
</tr>
</tbody>
</table>

*1 USD=1.63095 BGN
*1 EUR=1.95583 BGN

Table 3. Production expenses per chicken during the test period, BGN.

<table>
<thead>
<tr>
<th>Parameters, BGN</th>
<th>I Group</th>
<th>II Group</th>
<th>III Group</th>
<th>IV Group</th>
<th>V Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeds</td>
<td>4.26</td>
<td>4.78</td>
<td>5.02</td>
<td>5.00</td>
<td>5.52</td>
</tr>
<tr>
<td>Labour costs with social insurances included</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
</tr>
<tr>
<td>Depreciation</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>Medication and treatment</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Electricity and water</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Other expenses</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Total expenses</td>
<td>7.97</td>
<td>8.49</td>
<td>8.73</td>
<td>8.71</td>
<td>9.23</td>
</tr>
</tbody>
</table>
calculated per animal per the experimental period. For this reason, the feed expense with its financial expression has the greatest effect on all production expenses. Production expenses in the fattening of conventional broilers were 6.58 BGN, 6.94 BGN, and 6.98 BGN per broiler (Ivanova, 2015). According to data by Kaitazov et al. (2000) this expense represents about 65-80% of the total expenses in fattening broilers. Our data indicated that the share of feed expenses for group I was 53.45% of the total expenses, in groups II, III, IV and V it was 59.88%, 56.30%, 57.50%, 56.87%, respectively. The lower share of feed expenses in the fattening of slow-growing broilers was due to the longer period of feeding the chickens from all groups, and thus due to the higher share of the other expenses within the structure of production expenses. The work remuneration fund was relatively the lowest in group V, compared to the total expenses 29.25% and the highest in group I - 33.87% (Figure 1).

Figure 1. Production expenses, BGN

According to other authors (Stoimenov et al., 1997; Kaitazoov, 2000), labour costs, depreciation, value of the one-day-old chickens make up about 35%. In poultry farming, the remuneration system of fatteners is formed by the value of boilers sold in live weight, the value of one-day-old chickens, plus the feed value (Aleksieva, 2004). Čobanoglu et al. (2014) reported that the higher slaughter age within the system for organic production (81 days versus 42 days) and the additional feeds needed for these older chickens were the reasons for the higher expenses. It has been established in numerous studies (Padel et al., 1997; Rossiter, 2001; USDA/AMS, 2003; Vermeij, 2004; Fanatico, 2008; Rodenburg et al., 2008) that the share of feed in the total expenses was higher in organic than in the conventional systems.

The Dutch Agricultural Economic Institute (LEI) gets a picture of economic effect from fattening of slow-growing broilers. The evaluation is that the cost per kg of live weight for the broiler farmer would increase by 8.5 - 10% mainly due to higher housing costs, higher feed costs and higher labour cost (Van Harn and Van Middelkoop, 2001). There are some facts that reduce cost per kg: a cheaper day-old cost, lower mortality and cheaper feed. Table 4 presents the profits from fattening slow-growing broilers at three levels of grill sale prices - 3.60 BGN/kg, 4.65 BGN/kg and 5.30 BGN/kg, respectively, and of the edible offal and the neck - 2.60 BGN/kg. It was found that for the three levels of sale prices, the lowest profits were observed in group III - 7.13 BGN, 9.10 BGN, and 10.32 BGN, followed by those of group I with respective profits of 7.48 BGN, 9.54 BGN and 10.81 BGN. The highest profits were registered by the birds of group V with grill mass of 2.830 kg, followed by group IV with 2.248 kg, and group II with 2.179 kg. The profits from the mass of the edible offal plus the neck preserved this trend. The parameters were superior in group V with 0.52 BGN, with a yield of 0.202 kg, followed by group IV - 0.47 BGN and group II 0.42 BGN with respective amounts of 0.181 kg and 0.163 kg.

Table 4. Profit per chicken, BGN

<table>
<thead>
<tr>
<th>Parameters, BGN</th>
<th>I Group</th>
<th>II Group</th>
<th>III Group</th>
<th>IV Group</th>
<th>V Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>price, BGN/kg</td>
<td>price, BGN/kg</td>
<td>price, BGN/kg</td>
<td>price, BGN/kg</td>
<td>price, BGN/kg</td>
</tr>
<tr>
<td>Grill</td>
<td>3.60</td>
<td>4.65</td>
<td>5.30</td>
<td>3.60</td>
<td>4.65</td>
</tr>
<tr>
<td>Quantity, kg</td>
<td>1.963</td>
<td>2.179</td>
<td>1.875</td>
<td>2.248</td>
<td>2.830</td>
</tr>
<tr>
<td>Edible offal and neck/2.60BGN/kg</td>
<td>0.157</td>
<td>0.163</td>
<td>0.145</td>
<td>0.181</td>
<td>0.202</td>
</tr>
<tr>
<td>Quantity, kg</td>
<td>0.41</td>
<td>0.42</td>
<td>0.38</td>
<td>0.47</td>
<td>0.52</td>
</tr>
<tr>
<td>Value, BGN</td>
<td>0.41</td>
<td>0.42</td>
<td>0.38</td>
<td>0.47</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Table 5 presents the economic parameters from the fattening of a single chicken. The profit is calculated across the three levels of grill sale price.

At a level of grill sale of 3.60 BGN/kg, the profit achieved was +1.48 BGN only for the fattening of the chickens from group V. The other groups registered loss -1.60 BGN, which was the highest in group III.

At a level of grill sale of 4.65 BGN/kg, profit was achieved in all analysed groups, with its amount being the highest in group V +4.45 BGN, followed by group IV +2.21 BGN, and the lowest in group III +0.37 BGN.

An analogous trend was observed in the third and highest level of sale price 5.30 BGN/kg. The profit for group V was 6.29 BGN, followed by group IV 3.67 BGN, and group II with 3.48 BGN, while the lowest profit from fattening chickens was registered in group III 1.59 BGN.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>I Group</th>
<th>II Group</th>
<th>III Group</th>
<th>IV Group</th>
<th>V Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>At a price of:</td>
</tr>
<tr>
<td>3.60 4.65 5.30</td>
</tr>
<tr>
<td>Production expenses, BGN</td>
<td>7.97</td>
<td>8.49</td>
<td>8.73</td>
<td>8.71</td>
<td>9.23</td>
</tr>
<tr>
<td>Profit, BGN</td>
<td>-0.49 1.57 2.84</td>
<td>-0.23 2.06 3.48</td>
<td>-1.6 0.37 1.59</td>
<td>-0.14 2.21 3.67</td>
<td>1.48 4.45 6.29</td>
</tr>
<tr>
<td>Profitability norm, %</td>
<td>-6.14 19.70 35.63</td>
<td>-2.71 24.26 40.98</td>
<td>-18.32 4.24 18.21</td>
<td>-0.15 25.37 42.13</td>
<td>16.03 48.21 68.14</td>
</tr>
</tbody>
</table>

The profitability norm is an integral economic parameter for the activity (Figure 2). At a level of sale prices of 3.60 BGN/kg the group with a positive profitability value was 16.03%, per group V. For all other groups, the profitability norm was negative, i.e. the fattening was economically ungrounded.

At a level of sale prices of 4.65 BGN/kg, the highest profitability was observed in the chickens from group V – 48.21%, followed by group IV - 25.37%, while the lowest efficiency was registered in group III - 4.24%.

In the variant with sale prices of 5.30 BGN/kg, the sustainability norm was the highest in group V - 68.14%, followed by group IV - 42.13% and group II - 40.98%, and the lowest in group III - 18.21%.

Conclusion

The share of expenses for feeds within the general production expense structure for the different groups varied within the range of 53.45% - 59.88%. The highest profits were achieved with the fattening of broiler chickens from group V (control group), and the lowest – in group III (M x NHG). At a level of sale price for 3.60 BGN/kg, it is economically justified to fatten only the chickens from group V. At a price of produce sale of 4.65 BGN/kg and 5.30 BGN/kg, the fattening of broiler chickens was economically justified for all groups, with the highest efficiency being registered in group V, and the lowest - in group III.

References

Evaluation of alternative genotypes and production systems for natural and organic poultry markets in the U.S. 12th European Poultry Conference; Sept 10-14; Verona Italy, 62-3.

Regulation No. 22/14.12.2005 of Ministry of Agriculture and Food (MAF) to minimize animal suffering during slaughter, Date of promulgation 25.05.2006.

Stoimenov B, 1976. Some issues of economic efficiency of broiler meat production—problems of poultry meat production and processing. NCIINTI, Sofia, 126-133 (Bg)

Takahashi SE, Mendes AA, Saldanha ESPB, Pizzolante CC, Pelícia K, García RG, Paz ICLA and Quinteiroet RR, 2006. Efeito do sistema de criação sobre o desempenho e rendimento de carcaça de frangos de corte tipo colonial, Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 58, 624-632 (Pg).

Review

Achievements and problems in the weed control in grain maize (Zea mays L.)
G. Delchev, M. Georgiev

Genetics and Breeding

Yield and coefficient of ecological valence of spring barley in the regions of Sadovo and Karnobat, Bulgaria
N. Neykov, T. Mokreva

Agronomic performance of mutant lines of winter two-rowed barley
B. Dyulgerova, D. Valcheva, N. Dyulgerov

Phenotypic diversity in six-rowed winter barley (Hordeum sativum L.) varieties
N. Dyulgerov, B. Dyulgerova

Evaluation of rye specimens in maturity stage on the base of mathematical – statistical analysis
V. Kuneva, E. Valchinova, A. Stoyanova

Evaluation of lentil cultivars and lines for resistance to Fusarium oxysporum f.sp. lentis
M. Koleva, Y. Stanoeva, I. Kiryakov, A. Ivanova, P. Chamurlisky

Registration of a new sunflower hybrid - Sevar
P. Peevska, M. Drumeva, G. Georgiev

Nutrition and Physiology

The effect of novel xylanase on feeding value of diet containing cereal by-products for broilers
J.M. Abdulla, S.P. Rose, V. Pirgozliev

Effect of dietary garlic powder and probiotics supplementation on growth performance of male Ross 308 broilers
H. Lukanov, I. Pavlova, A. Genchev

Slaughter traits of Pharaoh Japanese quails
A. Genchev, H. Lukanov, I. Penchev

Blood count in dogs with mammary gland carcinoma
Ts. Hristov, R. Binev

Production Systems

Economic efficiency of fattening on different genotypes slow-growing and fast-growing broiler chickens
M. Oblakova, Y. Popova, P. Hristakieva, N. Mincheva, M. Lalev
Effect of nutmeg extract supplementation on some productive traits and economic efficiency of common carp (*Cyprinus carpio* L.) cultivated in recirculation system
G. Zhelyazkov, S. Stoyanova, I. Sirakov, K. Velichkova, Y. Staykov

Agriculture and Environment

Influence of biomanipulation on the living communities and the water quality in the Strezhevo hydroecosystem, R. Macedonia
R. Nastova, V. Kostov, N. Gjorgovska, V. Levkov

Product Quality and Safety

Residue analysis of difenoconazole in apple fruits grown in Republic of Macedonia
V. Jankuloska, I. Karov, G. Pavlovska

Organoleptic properties of white yam (*Dioscorea rotundata* poir) as affected by autoclaving time
M. Ahmed, Y.B. Kiri, M.S. Abubakar

Influence of Goji berries on oxidative changes, microbiological status and chemical properties of sausages
A. Mitev, A. Kuzelov, E. Joshevska
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. It should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn't be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:

In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Todorov N and Mitev J, 1995. Effect of level of feeding during dry period, and body condition score on reproductive performance in dairy cows. IX* International Conference on Production Diseases in Farm Animals, September 11-14, Berlin, Germany.

Thesis:

Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.

The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.