Editor-in-Chief
Georgi Petkov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria
E-mail: gpetkov@af.uni.sz.bg

Co-Editor-in-Chief
Dimitar Panayotov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections
Genetics and Breeding
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothschind (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Stoicho Metodiev (Bulgaria)
Bojin Bojinov (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Ivan Varlyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Jean-François Hocquette (France)
Bogdan Szostak (Poland)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)
Roumiana Tsenková (Japan)

English Editor
Yanka Ivanova (Bulgaria)

Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agriscitech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agriscitech.eu, and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines
The articles appearing in this journal are indexed and abstracted in: AGRIS (FAO), CABI, EBSO-host, ROAD and DOAJ. DOI system is used for article identification.
The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.
This issue is printed with the financial support by Contract No. DNP 06-41/20.12.2017, financed from Fund 'Scientific Research' grant Bulgarian scientific periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agriscitech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agriscitech.eu
Analysis of structure and performance of paddy rice marketing in Adamawa state, Nigeria

Y. Dauna*, D.Y. Giroh1, W.B. Adamu2

1Department of Agricultural Economics and Extension, School of Agriculture and Agricultural Technology, Modibbo Adama University of Technology, Yola, Nigeria
2Yola Electricity Distribution Company Yerwa Business Unit, Maiduguri, Nigeria

(Manuscript received 20 March 2018; accepted for publication 31 May 2018)

Abstract. Many factors such as inadequate capital, poor infrastructure, poor price information could bring about distortion in the structure and performance of the market process resulting to the reduction in profit margin of marketers and a disincentive to present and prospective marketers of paddy rice. This study was conducted to analyze of the total output of grain crops worldwide. Rice is one of the most important food crops depended on by over 50% of the population of the world. The total rice under cultivation is globally estimated to be 150 million hectares, with annual production averaging 500 million metric tonnes (Onyango, 2014). This represents 29% of the total output of grain crops worldwide. Rice is one of the most important food crops depended on by over 50% of the world population for about 80% of their food need, especially in Asia and in West and Central Africa (Conteh et al., 2012). Due to the growing importance of the crop and increasing challenges of the attainment of food security, it has been estimated that the annual rice production needs to increase from 586 million metric tonnes in 2001 to meet the projected global demand of about 756 million metric tonnes by 2030 (Keuneman, 2006).

In sub-Saharan Africa, rice is one of the commodities whose demand is rapidly growing, mainly driven by urbanization. With the population of Africans living in urban areas expected to increase from current 38% to 48% by 2030, rice consumption in Africa is expected to increase tremendously (Africa Rice Center, 2013). The global trend in rice industry shows that there is a growing import of the commodity in Africa. In 2006, Africa’s global rice imports accounted for 32% (Awodite et al., 2012). In 2009 rice import into Sub-Saharan Africa was 9.68 million metric tonnes, worth more than $5 billion. Due to population growth (4% per annum), rising incomes and a shift in consumer preferences in favour of rice, especially in urban areas, the relative growth in demand for rice is faster in this region than anywhere in the world (Timmer, 2004). Rice occupies an important place in Nigeria; it is one of the major staples which can provide the nation’s population with the nationally required food security minimum of 2,400 calories per day (Bamidele et al., 2010). In 2010, the total demand for milled rice in Nigeria was estimated to be 5 million metric tonnes out of which 3.2 million metric tonnes was produced locally and the deficit was bridged by importation (Inuwa et al., 2011). The main actors in the rice chain in Nigeria are farmers, paddy traders, millers, rice traders and retailers, and the main value adding activities include production, harvesting, storage and paddy aggregation at traders’ level, parboiling, milling, wholesaling and retailing (FAO, 2013). In spite of the fact that rice is cultivated in virtually all the agro-ecological zones in Nigeria, the area under rice cultivation remained small, yield remained the lowest in the region and quality of paddy remained poor due to presence of stones, mixed varieties and broken seeds (NRDS, 2009). Beyond the farm gate, there are several issues that retard the downstream activities which are also constraining local supply of the commodity. These include issues such as the absence of standard measures in the marketing of rice, poor transportation services and lack of proper packaging materials and poor linkages to processing industries. Rice milling in Nigeria is at the cottage industry level. The milling capacity varies from 50 kg to 5000 kg rice per hour. The most frequent type of mill encountered is the ‘medium size’ (150 to 300 kg/h), which represents half of the sample, followed by the ‘small size’, the less frequent type of mills being the ‘big size’ and ‘large size’ (Lançon et al., 2003). These combined with large number of participants in the value chain coupled with on-farm constraints add up to undermine the competitiveness of rice industry in Nigeria (Daramola, 2005).

The rice marketing system in Nigeria is characterized by inadequate knowledge of postharvest handling, processing and marketing, harvesting skills, poor means of transportation, and lack of industrial drive. Others are poor government policy and high

Keywords: rice, marketing, market structure, market concentration, performance

Introduction

Rice (Oryza sativa L.) which belongs to the family “Gramineae” and genus “Oryza,” is one of the main staple foods for 70% of the population of the world. The total rice under cultivation is globally estimated to be 150 million hectares, with annual production averaging 500 million metric tonnes (Onyango, 2014). This represents 29% of the total output of grain crops worldwide. Rice is one of the most important food crops depended on by over 50% of the world population for about 80% of their food need, especially in Asia and in West and Central Africa (Conteh et al., 2012). Due to the growing importance of the crop and increasing challenges of the attainment of food security, it has been estimated that the annual rice production needs to increase from 586 million metric tonnes in 2001 to meet the projected global demand of about 756 million metric tonnes by 2030 (Keuneman, 2006).

In sub-Saharan Africa, rice is one of the commodities whose demand is rapidly growing, mainly driven by urbanization. With the population of Africans living in urban areas expected to increase from current 38% to 48% by 2030, rice consumption in Africa is expected to increase tremendously (Africa Rice Center, 2013). The global trend in rice industry shows that there is a growing import of the commodity in Africa. In 2006, Africa’s global rice imports accounted for 32% (Awodite et al., 2012). In 2009 rice import into Sub-Saharan Africa was 9.68 million metric tonnes, worth more than $5 billion. Due to population growth (4% per annum), rising incomes and a shift in consumer preferences in favour of rice, especially in urban areas, the relative growth in demand for rice is faster in this region than anywhere in the world (Timmer, 2004). Rice occupies an important place in Nigeria; it is one of the major staples which can provide the nation’s population with the nationally required food security minimum of 2,400 calories per day (Bamidele et al., 2010). In 2010, the total demand for milled rice in Nigeria was estimated to be 5 million metric tonnes out of which 3.2 million metric tonnes was produced locally and the deficit was bridged by importation (Inuwa et al., 2011). The main actors in the rice chain in Nigeria are farmers, paddy traders, millers, rice traders and retailers, and the main value adding activities include production, harvesting, storage and paddy aggregation at traders’ level, parboiling, milling, wholesaling and retailing (FAO, 2013). In spite of the fact that rice is cultivated in virtually all the agro-ecological zones in Nigeria, the area under rice cultivation remained small, yield remained the lowest in the region and quality of paddy remained poor due to presence of stones, mixed varieties and broken seeds (NRDS, 2009). Beyond the farm gate, there are several issues that retard the downstream activities which are also constraining local supply of the commodity. These include issues such as the absence of standard measures in the marketing of rice, poor transportation services and lack of proper packaging materials and poor linkages to processing industries. Rice milling in Nigeria is at the cottage industry level. The milling capacity varies from 50 kg to 5000 kg rice per hour. The most frequent type of mill encountered is the ‘medium size’ (150 to 300 kg/h), which represents half of the sample, followed by the ‘small size’, the less frequent type of mills being the ‘big size’ and ‘large size’ (Lançon et al., 2003). These combined with large number of participants in the value chain coupled with on-farm constraints add up to undermine the competitiveness of rice industry in Nigeria (Daramola, 2005).

The rice marketing system in Nigeria is characterized by inadequate knowledge of postharvest handling, processing and marketing, harvesting skills, poor means of transportation, and lack of industrial drive. Others are poor government policy and high

* e-mail: daunayakubu@gmail.com
production cost, poor market information and inadequate credit facilities. These coupled with poor market conduct and structure translate to poor market performance in the Nigerian rice industry (Ajala and Gana, 2015). According to Tiamiyu et al. (2014) the general trend of rice marketing in Nigeria shows an upward movement in price every year, and the trend line for its consumption has been on the increase from 1969, which could be attributed to population growth, increase in income and increased availability of the product. The study had as objective to analyze the structure and performance of rice markets in Adamawa state, Nigeria.

Material and methods

Study Area

Adamawa State is located at the North-Eastern part of Nigeria; it lies between latitude 7° and 11°N of the equator and longitude 11° and 14°E of the Greenwich Meridian. It shares boundary with Taraba State in the South and West, Gonge in the North-West and Borno to the North (Adebayo, 1999). Adamawa State has an international boundary with the Cameroon Republic along its eastern border. The State has a land area of about 38.741km² with a population of 3860023 people (projected from NPC, 2006 using 2.5% growth rate).

Source of Data and Sampling Procedures

Data for this study were from primary sources and were collected from 204 respondents. Multi-stage sampling techniques were employed in selecting the respondents. In the first stage, all the four agricultural zones of Adamawa State were considered, which include:

- **Zone 1**: Madagali, Michika, Mubi North, Mubi South and Maiha.
- **Zone 2**: Hong, Gombi, Song and Girei.
- **Zone 3**: Furore, Ganye, Jada, Mayo-Belwa, Toro, Yola North and Yola South.
- **Zone 4**: Demsa, Guyuk, Lamurde, Numan, and Shelleng.

The second stage involved the purposeful selection of ten rice markets in the State. The third stage involved the categorization of the respondents into wholesalers and retailers. The number of wholesalers and retailers were obtained from “Sarkin Kasuwa” and they classified the rice marketers as those that sell in bags (wholesalers) and those that sell in different units of small measures as retailers. The final stage was the random selection of 60 wholesalers and 144 retailers proportionate to the number (40%) of respondents in each market.

Analytical Techniques

The analytical tools employed included Herfindahl-Hirschman Index (HHI) and Marketing Efficiency measure.

The HHI technique was used to determine the structure of rice marketing in Adamawa State. The study adopted the HHI model used by Naldi and Flamini (2014) where HHI was described as a positive figure and market shares were expressed as fractions of the whole. The HHI is mathematically expressed as:

\[
HHI = \sum_{i=1}^{n} S_i^2
\]

where: HHI= Herfindahl-Hirschman Index; \(S_i\) = market share of the \(i^{th}\) firm; \(\sum\) = summation sign; \(n\) = number of marketers.

According to the United States Department of Justice (2010), the value of HHI can be interpreted as follows:

- HHI of less than 0.01 or 100 indicates a highly competitive industry;
- HHI of bellow 0.15 or 1500 indicates an unconcentrated industry;
- HHI of between 0.15-0.25 or 1, 500-2500 indicates high concentration.

Marketing Efficiency

Marketing efficiency (ME) is a measure of the market performance. Awotide and Ajala (2007) stated that the overall marketing performance/economic performance (ME) can be determined by the formula:

\[
ME = \frac{Net\ margin}{Marketing\ cost} \times 100
\]

The net margin accruing to the wholesaler or the retailer is the difference between the marketing revenue and marketing cost. Marketing cost is the sum of transportation cost, storage cost and other costs. If the marketing efficiency = 1 (highly efficient), it implies that abnormal profit is being made in the trade and some elements are unduly reaping from the efforts of others. Again, when ME < 1 (under efficient) it implies that a sizeable loss is being recorded in the trade.

Results and discussion

Market Structure

Market Concentration level derived from the analysis of Herfindahl-Hirschman Index (HHI) is presented in Table 1. From the table the HHI for retailers are 10.85, 9.66, 37.62 and 11.38 for 2013, 2014, 2015 and pooled values, respectively. This result shows that the HHI values in years 2013, 2014, 2015 and the pooled is less than 100, indicating that the markets have highly competitive structure among the retailers. The result suggests that retail rice marketing in the study area is characterized by a large number of sellers highly competing with each other to satisfy the wants and needs of larger consumers, and no seller or group of sellers, or consumer or group of consumers dictated how the market operated. The results also revealed that the HHI values in the wholesale category were 72.34, 280.12, 60.79 and 71.24 for 2013, 2014, and 2015 and pooled, respectively. This means that in years 2013 and 2015 rice marketing was highly competitive among the wholesalers but moderately competitive in year 2014. Relatively among the whole category, rice market in 2013 and 2015 had a lower index value, than in 2014. This implies that rice market was more competitive in 2013 and 2015 than 2014 in the study area. The reason behind moderate market structure in year 2014 might be attributed to high level of insurgency attack during the period which caused some market participants not be involved in marketing activities. The pooled index has a value less than 100 meaning that in Adamawa State, rice has a highly competitive market structure, hence, high motivation for sellers to be more efficient. This result contrasts Bassey et al. (2013) which stated that a rice market in Nigeria is highly concentrated, implying that rice trade is in the hands of relatively few traders. The implication of the result of this study is that rice is one of the major staples produced by many farmers and is readily available for sale to consumers. Also, there is a prospect of high market performance because the markets are characterized by a large number of sellers highly competing with each other to satisfy the wants and needs of a larger consumer.
Market Performance

Market performance refers to the efficiency of a market in utilizing scarce resources to meet consumer's demand for goods and services; that is how well a market has contributed to the optimization of economic welfare. Analysis of the results in Table 2 for marketing efficiency of rice marketing was determined. The finding shows marketing efficiency of 42% and 24% for retailer and wholesaler, respectively. This means that 42% was accrued to retail marketers as average profit and 24% was accrued to wholesale marketers as average profit. This indicates low marketing efficiency among all categories of marketers in the entire markets. The low performance of marketers might be attributed to their inability to employ technically new cost-cutting strategies in the distribution of a new superior product over time. This contrasts the finding of Abah et al. (2015) that rice marketing in Nigeria is highly efficient. The implication of this low performance is that the outcome of the market did not reflect the desires of the larger society in terms of price levels and price stability in long and short term, profit levels, cost efficiency and quantities and quality of paddy rice.

Table 1. Market concentration of respondents using Herfindahl-Hirschman Index (HHI)

<table>
<thead>
<tr>
<th>Year</th>
<th>Retailer</th>
<th>Wholesaler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HHI Value</td>
<td>Concentration level</td>
</tr>
<tr>
<td>2013</td>
<td>10.85</td>
<td>Highly competitive</td>
</tr>
<tr>
<td>2014</td>
<td>9.66</td>
<td>Highly competitive</td>
</tr>
<tr>
<td>2015</td>
<td>37.62</td>
<td>Highly competitive</td>
</tr>
<tr>
<td>Pooled</td>
<td>11.38</td>
<td>Highly competitive</td>
</tr>
</tbody>
</table>

Source: Output from E-View

Table 2. Estimation of Efficiency of Rice Marketing

<table>
<thead>
<tr>
<th>Variables</th>
<th>Retailers (Value $)</th>
<th>Wholesalers (Value $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price received by farmers (FP)</td>
<td>190749.24</td>
<td>445081.54</td>
</tr>
<tr>
<td>Marketing cost (MC)</td>
<td>47246.29</td>
<td>87743.13</td>
</tr>
<tr>
<td>Total sales</td>
<td>596588.82</td>
<td>2244310.3</td>
</tr>
<tr>
<td>Marketing margin (MM)(SP-FP)</td>
<td>405839.58</td>
<td>1799228.8</td>
</tr>
<tr>
<td>Technical Efficiency (FP/(MC+MM)]</td>
<td>0.42</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Source: Field survey, 2015

Conclusion

The study concluded that Adamawa State rice markets have highly competitive structure with low performance among participants in the markets. Thus, policies that will positively influence the performance of market participants must be attended to achieve high performance in rice marketing in that region of Nigeria.

References

May 29, 2009.
US Department of Justice, 2010. Horizontal Merger Guidelines, p. 34.
Review

Ovarian cysts in sows: causes, frequency of occurrence - a review
B. Szostak, A. Stasiak, V. Katsarov, T. Penev

Genetics and Breeding

Exterior traits of a male parental form for production of autosexing Easter eggers
H. Lukanov, A. Genchev, E. Halil

In vitro propagation of white oil-bearing rose (Rosa alba L.)
V. Badzhelova, V. Bozhanova, G. Chokov

Sexual dimorphism in growth and feeding of Japanese quails in Northern Guinea Savanah
N. N. Molokwu, H. Y. Abbaya

Nutrition and Physiology

Effect of pawpaw (Carica papaya) leaf meal on productive parameters of growing rabbits
P.C. Jiwuba

Production Systems

Effect of fertilizer type and plant spacing on plant morphological characteristics, yield and chemical composition of desho grass (Pennisetumpedicellatum Trin.) in Northwestern Ethiopia
B. Mihret, B. Asmare, Y. Mekuriaw

Perception of rural farmers on pesticide use in vegetable production
M. Naznin, M. S. I. Afrad, M. E. Haque, M. Zakaria, A. A. Barau

A study on entrepreneurship skill practices among rural women in Kwara state, Nigeria
G.B. Adesiji, S.O. Ibrahim, S.E. Komolafe

Technical efficiency of cowpea farmers in Mubi south local government area of Adamawa state, Nigeria
T. Joshua

An assessment of farmers' knowledge of yam entrepreneurial skills in Ekiti State, Nigeria
S.E. Komolafe, G.B. Adesiji

Assessment of the yields of essential oil crops in Bulgaria through mathematical approaches
N. Keranova
Agriculture and Environment

12. Effect of bioorganic fertilizers and growth regulators on productivity and immune response of field tomatoes
O. Georgieva, N. Valchev

Wastewater characteristics by physico-chemical parameters from different type treatment plants
D. Dermendzhieva

Determination of Stone marten (*Martes foina*) and Pine marten (*Martes martes*) in natural habitats using camera traps
E. Raichev

Profitability analysis of small-scale fish farming in Mubi metropolis of Adamawa State, Nigeria: Alternative to poverty alleviation
J.D. Daniel, Z.H. Yerima, A.B. Shelleng

Product Quality and Safety

Meat quality and boar taint in entire male pigs fattened to 90 kg

Analysis of structure and performance of paddy rice marketing in Adamawa state, Nigeria
Y. Dauna, D.Y. Giroh, W.B. Adamu
Results

ment possible for others to repeat the experi-

ments should be described in detail.

chemical analyses, statistical and other

research, organization of experiments,

Material and methods:

hypothesis and goal ?

necessitated the research problem,

following questions: What is known and

should be understandable without having

authors are inadmissible in the summary. It

needs to be as concise and

informativ about the nature of research. It

should be written with small letter /bold, 14/

without any abbreviations.

Names and affiliation of authors

The names of the authors should be

represented from the initials of first names

followed by the family names. The complete

description of affiliation should be stated

next. The affiliation of authors are designated

by different signs. For the author who is

going to be corresponding by the editorial

board and readers, an E-mail address and

telephone number should be presented as

footnote on the first page. Corresponding

author is indicated with *.

Abstract should be not more than 350

words. It should be clearly stated what new

findings have been made in the course of

research. Abbreviations and references to

authors are inadmissible in the summary. It

should be understandable without having

read the paper and should be in one

paragraph.

Keywords: Up to maximum of 5 keywords

should be selected not repeating the title

but giving the essence of study.

The introduction must answer the

following questions: What is known and

what is new on the studied issue? What

necessitated the research problem,

described in the paper? What is your

hypothesis and goal ?

Material and methods: The objects of

research, organization of experiments,

chemical analyses, statistical and other

methods and conditions applied for the

experiments should be described in detail.

A criterion of sufficient information is to be

possible for others to repeat the experi-

ment in order to verify results.

Results are presented in understandable

tables and figures, accompanied by the

statistical parameters needed for the

evaluation. Data from tables and figures

should not be repeated in the text. Tables

should be as simple and as few as

possible. Each table should have its own

explanatory title and to be typed on a

separate page. They should be outside the

main body of the text and an indication

should be given where it should be

inserted.

Figures should be sharp with good

contrast and rendition. Graphic materials

should be preferred. Photographs to be

appropriate for printing. Illustrations are

supplied in colour as an exception after

special agreement with the editorial board

and possible payment of extra costs. The

figures are to be each in a single file and

their location should be given within the

text.

Discussion: The objective of this section

is to indicate the scientific significance of

the study. By comparing the results and

conclusions of other scientists the

contribution of the study for expanding or

modifying existing knowledge is pointed

out clearly and convincingly to the reader.

Conclusion: The most important conse-

quences for the science and practice

resulting from the conducted research

should be summarized in a few sentences.

The conclusions shouldn't be numbered

and no new paragraphs be used.

Contributions are the core of conclusions.

References:

In the text, references should be cited as

follows: single author: Sandberg (2002);

two authors: Andersson and Georges

(2004); more than two authors: Andersson

et al (2003). When several references are

cited simultaneously, they should be

ranked by chronological order e.g.: (Sandberg,

2002; Andersson et al., 2003; Andersson

and Georges, 2004).

References are arranged alphabetically by

the name of the first author. If an author is

cited more than once, first his individual

publications are given ranked by year, then

come publications with one co-author, two

co-authors, etc. The names of authors,

article and journal titles in the Cyrillic or

alphabet different from Latin, should be

transliterated into Latin and article titles

should be translated into English. The

original language of articles and books

translated into English is indicated in

parenthesis after the bibliographic

reference (Bulgarian = Bg, Russian = Ru,

Serbian = Sr, if in the Cyrillic, Mongolian =

Mo, Greek = Gr, Georgian = Geor.,

Japanese = Ja, Chinese = Ch, Arabic = Ar,

etc.)

The following order in the reference list is

recommended:

Journal articles: Author(s) surname and

initials, year. Title. Full title of the journal,

volume, pages. Example:

Simm G, Lewis RM, Grundy B and

Dingwall WS, 2002. Responses to

selection for lean growth in sheep. Animal

Science, 74, 39-50

Books: Author(s) surname and initials,

year. Title. Edition, name of publisher,

place of publication. Example:

Oldenbroek JK. 1999. Genebanks and

the conservation of farm animal genetic

resources, Second edition. DLO Institute

for Animal Science and Health,

Netherlands.

Book chapter or conference proceedings:

Author(s) surname and initials, year. Title.

In: Title of the book or of the proceedings

followed by the editor(s), volume, pages.

Name of publisher, place of publication.

Example:

Mauff G, Pulverer G, Operkuch W,

Hummel K and Hidden C, 1995. C3-

variants and diverse phenotypes of

unconverted and converted C3. In:

Provides of the Biological Fluids (ed. H.

Peters), vol. 22, 143-165, Pergamon

Todorov N and Mitev J, 1995. Effect of

level of feeding during dry period, and body

condition score on reproductive perfor-

mance in dairy cows.IX” International

Conference on Production Diseases in

Farm Animals, September 11–14, Berlin,

Germany.

Thesis:

Hristova D, 2013. Investigation on genetic

diversity in local sheep breeds using DNA

markers. Thesis for PhD, Trakia University,

Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not

responsible for incorrect quotes of

reference sources and the relevant

violations of copyrights.

Animal welfare

Studies performed on experimental

animals should be carried out according to

internationally recognized guidelines for

animal welfare. That should be clearly

described in the respective section

“Material and methods”.