Editor-in-Chief
Georgi Petkov
Faculty of Agriculture
Trakia University, Stara Zagora Bulgaria
E-mail: gpetkov@af.uni.sz.bg

Co-Editor-in-Chief
Dimitar Panayotov
Faculty of Agriculture
Trakia University, Stara Zagora Bulgaria

Editors and Sections
Genetics and Breeding
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsenev (Bulgaria)
Max Rothchild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Stoichio Metodiev (Bulgaria)
Bojin Bojnov (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Ivan Vartyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Production Systems
Radoslav Slavov (Bulgaria)
Dimiter Pavlov (Bulgaria)
Jean-François Hoquette (France)
Bogdan Szostak (Poland)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
VASIL ATANASOV (Bulgaria)
Roumiana Tsenkova (Japan)

English Editor
Yanka Ivanova (Bulgaria)

Scope and policy of the journal
Agricultural Science and Technology /AST/ – an International Scientific Journal of Agricultural and Technology Science is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
There are no submission/handling/publication charges.
All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agrisctech.eu.
Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agrisctech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence.
They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal.
The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines
The articles appearing in this journal are indexed and abstracted in: AGRIS (FAO), CABI, EBSCO-host, ROAD and DOAJ. DOI system is used for article identification.
The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.
This issue is printed with financial support by Contract No. DNP 05-41/20.12.2017, financed from Fund ‘Scientific Research’ grant Bulgarian scientific periodicals.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student's campus, 6000 Stara Zagora Bulgaria
Telephone: +359 42 699330
+359 42 699446
www.agrisctech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agrisctech.eu
Theoretical analysis of the heat energy savings in wood pellets production

R. Georgiev*, K. Peychev, V. Dimova, D. Georgiev

Department of Agricultural Engineering, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

(Manuscript received 4 June 2018; accepted for publication 6 August 2018)

Abstract. The report includes a theoretical analysis of the heat energy savings in the drying of wood biomass with desiccant fumes. With the current technological schemes for drying wood pellets most heat is lost with the exhaust fumes. To use the heat of exhaust fumes it is proposed to utilize these by a heat exchanger recuperator type, which transfers part of the heat of the exhaust gas to the fresh air entering the dryer installation. Thus, about 25% of the heat for drying biomass can be saved. The report examines the relationship between outdoor temperature and condensation of moisture from the exhaust gases on the relative share of energy saved using a heat exchanger.

Keywords: wood biomass, heat savings, desiccant fumes, exhaust fumes, heat exchanger recuperator

Introduction

Biomass and in particular wood is an enormous potential as a renewable energy source, which can be used successfully in heated livestock buildings. Pellets manufactured from wood are very suitable for this purpose because of the best heating quality (Uasuf and Becker, 2011; Selivanovs et al., 2012). In many cases they can replace natural gas, oil and coal as fuel. In the production of wood pellets significant energy costs are involved. The energy consumed to produce one tonne of pellets amounts at 400-600 kWh of energy on average (Di Giacomo and Taglieri, 2009; Pirraglia et al., 2010). About 70% of the total energy consumed goes for drying the source wood material (Pirraglia et al., 2010; Nikolov, 2013). Another feature of wood driers is the maintenance of a minimum temperature of 100°C at the outlet of dryers to prevent condensation from resins and acids from the exhaust gases (Amos, 1998). Of course, the proportion of energy for drying the wood depends on the moisture of the raw material (Peychev et al., 2006). It is different, but usually ranges from 30 to 55%. The use of waste and cheap heat to dry biomass is crucial for the efficient production of pellets (Li et al., 2011). To reduce energy costs in drying there are options for using the heat from waste gases. Karkania et al. (2012) reported 40-50% heat saving through the use of a heat exchanger recuperator-condenser. Dried technological wood waste (wood shavings and sawdust) are often used for production of pellets. Their wood is dried in advance to 10% and no further drying is needed. It has been found that the formation of the value of the pellets follows the following proportion - 50% for raw material, 40% manufacturing costs and 10% for transport of the pellets (The Wood Pellet Value Chain, 2013). The problem is also the drying of wood before its direct use, the requirement being its humidity to be not higher than 20-25% (Peychev et al., 2008; Prokkola et al., 2014; Laitila et al., 2017). Literature review showed that the most energy-intensive process in the production of pellets is the drying of the source material - wood.

The purpose of this paper was to made a theoretical analysis of the possibilities for heat energy savings in drying pelletwood by using flue gases.

Material and methods

The theoretical analysis of the possibilities for heat energy savings in drying pelletwood was made based on a pneumatic dryer for drying wood. A mixture of flue gases produced in a flue gas furnace and a preheated exhaust air in the heat exchanger (Figure 1) is used for the drying agent.

![Figure 1. Technological diagram of drying installation by suing a recuperator](image_url)

The drying installation consists of a flue gas furnace, a mixing chamber - lowering the temperature of the flue gases under the technological one by blending with external air and recuperator. The recuperator serves for utilizing the heat of the flue gases. It preheats the external air fed to the furnace and the mixing chamber. Such a heat exchanger or heat pipe heat exchanger is suitable because it only uses energy exchange and there is no mass transfer between streams, i.e. no moisture is transferred to the drying agent.
which is important in this case. The wood for drying is fed into the dryer cut, with dimensions less than 4 mm, allowing it to dry within a few seconds. The processes of air treatment and drying in the drying installation are described in the h-x Mollier diagram for humid air (Figure 2).

The technological points characterizing the beginning and end of the processes in the h-x diagram are as follows:

- p.0 - characterizes the external environment;
- p.A - characterizes the condition of air after heating in the recuperator;
- p.F - characterizes the condition of flue gases after the furnace;
- p.1 - characterizes the condition of the drying agent after mixing of flue gases and the external air heated by the recuperator;
- p.2 - characterizes the condition of the exhaust drying agent.

The process from p.0 to p.2 presents evaporative cooling of the drying agent in the dryer. It is caused by moisture evaporating from the drying wood. In well-insulated dryer it is assumed that the process is adiabatic, i.e. h=const. The exhaust drying agent leaves with the parameters in point p.2. Its cooling in the heat exchanger is represented by the process line p.2 - p.3. The point p.3 represents the highest condensing temperature of the spent drying agent with parameters in p.2.

The air parameters at p.0 are assumed on average for the region of central southern Bulgaria (average annual temperature and relative humidity). The temperature of the air after the recuperative T1 is determined by equation (8) and the temperature T2 by equation (9) at the recuperator efficiency assumed 0.65 (Stamov et al., 2001). At the mixing point p.1, the temperature T3 and the moisture content x3 are determined by mixing the inlet air after the heat exchanger and the flue gases in a ratio in which the temperature T4 does not exceed 220°C (as well as the point p.2). For the production of flue gas, it is accepted to use waste wood with about 25% humidity, as is common practice in the area. The temperature of the exit from the drier T5 is accepted at 100°C, as condensation of acids and resins in the dryer (Amos Wade, 1998) starts at a lower temperature.

The amount of moisture in the wood ▼ W with the initial weight and moisture content, respectively m, and W1 to moisture W2 is determined by (Kazakova-Sankeva, 2001, Selivanovs et al., 2012) with the following formula:

\[▼ W = m1 (W1 - W2) / (100 - W2), \text{kg} \]

where:

- ▼ W - moisture content of the air at the input and output of the dryer, g/kg;
- m1 - specific air consumption (at ▼ W=1kg), kg air/kg moisture.

The needed amount of heat to evaporate the moisture is:

\[Q = L (h2 - h0), \text{kJ} \]

where:

- L - heat economy, kg; and the specific heat loss q (to evaporate 1 kg of moisture) is:

\[q = (h2 - h0), \text{kJ/kg moisture} \]

The needed amount of heat to evaporate the moisture is:

\[Q = L (h2 - h0), \text{kJ} \]

The heat economy qm for the specific flow rate l of the circulating air is determined using the h-x wet air diagram (Figure 2) and the equation:

\[qm = (h_a - h_o), \text{kJ/kg moisture} \]

Where:

- Ce - specific heat capacity of air, kJ/kg°C;
- ha - air enthalpy after recuperator, kJ/kg.

The share of heat saved s1 is determined by the expression:

\[s1 = qm/q \]

In a drying process with partial recirculation of the drying agent, the processes of preheating of the drying agent with heat exchangers do not change (Kazakova-Sankeva, 2001).

Under the conditions of the average annual temperature and humidity of the outside air, partial condensation of water vapor in the recuperator is achieved, which contributes to its relatively high efficiency. For temperature values Ta and T3 (Figure 1) according to (Stamov et al., 2001), the following is obtained:

\[Ta = T0 + \eta (T2 - T0), \text{°C} \]

\[T3 = T2 - \eta (T2 - T0), \text{°C} \]

Results and discussion

In the Mollier h-x chart (at 0.1 MPa), the individual points were determined under the conditions set forth above. One of the key technological points in the diagram of Figure 2 is p.1. It presents the parameters of the drying agent at the entrance to the dryer. The point p.1 (as well as the point p.F) lies to the right of the isotherm T1. As a result, the point p.2 also moves right to the isotherm T2, which can facilitate condensation in the heat exchanger as the condensate air temperature rises at point p.2. However, realistically, the...
consumption of wood for the production of flue gas is increasing to evaporate its own increased moisture.

The parameters of the drying agent (mixture of heated air and flue gases) at the technological points are presented in Table 1. The condensation temperature of the exhaust air T_3 (with parameters at point p.2) is reported at 44°C and the set temperature at the end of the heat exchanger $T_3 = 41.6°C$ (point p.3) is lower than the temperature of condensation (44°C), which favorably increases the energy exchange in the heat exchanger. It is found that at a temperature of the outside air T_0 above 15°C condensation of water vapor in the heat exchanger ceases, which reduces its efficiency.

The results for the energy-humidity flows when drying biomass with and without a heat exchanger are presented in Table 2. The presented results are for the energy and humidity flow when drying 1 t of wood with an initial moisture content $W_1 = 45\%$ to a final moisture content $W_2 = 10\%$, i.e. to the standard moisture content of the pellets.

From equations (2), (4) and (6) it follows that the different moisture of the drying wood changes the energy required for drying, but not the relative share of energy saved when using a heat exchanger. The results for the energy flows are illustrated in Figure 3.

Table 1. Parameters of the technological points in the drying installation

<p>| Temperature, Moisture content, Enthalpy, h, | |</p>
<table>
<thead>
<tr>
<th>Technological points</th>
<th>Temperature, °C</th>
<th>Moisture content, g/kg</th>
<th>Enthalpy, kJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.0</td>
<td>10.2</td>
<td>6.2</td>
<td>27</td>
</tr>
<tr>
<td>p.A</td>
<td>68.6</td>
<td>6.2</td>
<td>85</td>
</tr>
<tr>
<td>p.1</td>
<td>220.0</td>
<td>14.5</td>
<td>262</td>
</tr>
<tr>
<td>p.2</td>
<td>100.0</td>
<td>60.0</td>
<td>262</td>
</tr>
<tr>
<td>p.3</td>
<td>41.6</td>
<td>51.5</td>
<td>173</td>
</tr>
</tbody>
</table>

Table 2. Energy and moisture flow when drying wood with an initial moisture content of 45% to a final moisture content of 10%

<table>
<thead>
<tr>
<th>Moisture content of the wood, W, %</th>
<th>Moisture withdrawn, W, kg</th>
<th>Required energy for drying without heat exchanger, Q_1, MJ/t</th>
<th>Saved heat with heat exchanger, Q_s, MJ/t</th>
<th>Share of saved energy, $S1$, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 45</td>
<td>10</td>
<td>388.9</td>
<td>2008.6</td>
<td>495.7</td>
</tr>
</tbody>
</table>

Therefore, the use of chemically stable heat exchanger material and its periodic cleaning is recommended.

References

The Wood Pellet Value Chain, 2013. An economic analysis of the wood pellet supply chain from the Southeast United States to European Consumers. US Endowment for Forestry and Communities (edf.org/bioenergy), USA, p. 59.

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>1 / 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics and Breeding</td>
<td></td>
</tr>
<tr>
<td>Usability of metadata analysis of goat genetic resources among five</td>
<td>183</td>
</tr>
<tr>
<td>countries from Africa, Asia and Europe: Metadata analysis of goat</td>
<td></td>
</tr>
<tr>
<td>genetic</td>
<td></td>
</tr>
<tr>
<td>M.M. Musthafa, T. Hussain, M.E. Babar, R.S. Aljumaah, M.A. Alshaikh,</td>
<td></td>
</tr>
<tr>
<td>I. Muritala, V. Landi, A. Martinez, M. Amills, O. Dadi, J.V. Delgado,</td>
<td></td>
</tr>
<tr>
<td>A.B.J. Aina, A.A. Onasoga, O.A. Adebambo, C. Visser, E. Van Marle-Köster,</td>
<td></td>
</tr>
<tr>
<td>A.O. Adebambo, F.M.M.T. Marikar</td>
<td></td>
</tr>
<tr>
<td>Knezha 560 – a new mid-late maize hybrid</td>
<td>191</td>
</tr>
<tr>
<td>V. Valkova, N. Petrovska</td>
<td></td>
</tr>
<tr>
<td>Sources of resistance in chickpea (Cicer arietinum L.) to ascochyta</td>
<td>195</td>
</tr>
<tr>
<td>blight (Ascochyta rabiei)</td>
<td></td>
</tr>
<tr>
<td>M. Koleva, Y. Stanoeva, I. Kiryakov, A. Ivanova</td>
<td></td>
</tr>
<tr>
<td>Variability and grain yield potential of maize (Zea mays L.) genotypes</td>
<td>199</td>
</tr>
<tr>
<td>under irrigated condition in central Sudan</td>
<td></td>
</tr>
<tr>
<td>M.B. Alhussein, S.H. Suliman, A.A. Mohammed</td>
<td></td>
</tr>
<tr>
<td>Nutrition and Physiology</td>
<td></td>
</tr>
<tr>
<td>Effect of monosodium glutamate dietary supplementation on some</td>
<td>204</td>
</tr>
<tr>
<td>productive traits of common carp (Cyprinus carpio L.), cultivated</td>
<td></td>
</tr>
<tr>
<td>in net cages</td>
<td></td>
</tr>
<tr>
<td>G. Zhelyazkov</td>
<td></td>
</tr>
<tr>
<td>Effect of experimentally induced aflatoxicosis on haematological</td>
<td>208</td>
</tr>
<tr>
<td>parameters and bone marrow morphology in mulard ducks</td>
<td></td>
</tr>
<tr>
<td>I. Valchev, N. Groseva, D. Kanakov, Ts. Hristov, L. Lazarov, R. Biinev</td>
<td></td>
</tr>
<tr>
<td>Effect of dietary phytoextracts supplementation on the chemical</td>
<td>215</td>
</tr>
<tr>
<td>composition and fatty acid profile of rainbow trout (Oncorhynchus mykiss W.), cultivated in recirculation system</td>
<td></td>
</tr>
<tr>
<td>K. Georgieva, G. Zhelyazkov, Y. Staykov, D. Georgiev</td>
<td></td>
</tr>
<tr>
<td>Production Systems</td>
<td></td>
</tr>
<tr>
<td>Yield and seed quality of some soybean (Glycine max. L.) varieties,</td>
<td>222</td>
</tr>
<tr>
<td>cultivated in Osmaniye region, Turkey</td>
<td></td>
</tr>
<tr>
<td>F.F. Aşik, R. Yildiz</td>
<td></td>
</tr>
<tr>
<td>Productivity and yield stability at late treatment of durum wheat</td>
<td>227</td>
</tr>
<tr>
<td>(Triticum durum Desf.) with antiflodeled herbicides.</td>
<td></td>
</tr>
<tr>
<td>I. Influence at treatment during 1st stem node stage</td>
<td></td>
</tr>
<tr>
<td>Gr. Delchev, D. Delchev</td>
<td></td>
</tr>
<tr>
<td>The effects of inoculation and N fertilization on soybean [Glycine</td>
<td>232</td>
</tr>
<tr>
<td>max (L.) Merrill] seed yield and protein concentration under drought</td>
<td></td>
</tr>
<tr>
<td>stress</td>
<td></td>
</tr>
<tr>
<td>O. Basal, A. Szabó</td>
<td></td>
</tr>
<tr>
<td>Soil structure after treatment with different operation modes of</td>
<td>236</td>
</tr>
<tr>
<td>spading machine</td>
<td></td>
</tr>
<tr>
<td>Y. Stoyanov, K. Trendafilov, N. Delchev, G. Tihanov</td>
<td></td>
</tr>
</tbody>
</table>
Application of herbicides on common winter wheat (*Triticum aestivum* L.) at different doses and their reflection on the structural elements of spike
Z. Petrova, M. Nankova

Agriculture and Environment

Differences in carbon forms under two land use types in Abia State, South-east Nigeria
B.N. Ndukwu, D.N. Osujieke, C.M. Ahukaemere, P.E. Imadojemu

Theoretical analysis of the heat energy savings in wood pellets production
R. Georgiev, K. Peychev, V. Dimova, D. Georgiev

Agricultural characteristics of sugar factory waste products
B.B. Aşık, S. Dorak

Product Quality and Safety

Ontogenetic and diurnal variations of essential oil content of *Hypericum montbretii* Spach, cultivated in Kazdağlı (Edremit/Balıkesir), Turkey
C. Paşa, E. Esendal, T. Kiliç

Effect of *Artemisia annua* L. extract on growth performance, biochemical blood parameters and meat quality of rainbow trout (*Oncorhynchus mykiss* W.), cultivated in recirculating system
R. Koshinski
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.