Editor-in-Chief
Georgi Petkov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria
E-mail: gpetkov@af.uni-sz.bg

Co-Editor-in-Chief
Dimitar Panayotov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections
Genetics and Breeding
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsennov (Bulgaria)
Max Rothschild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Stoicho Metodiev (Bulgaria)
Bojin Bojinov (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Ivan Varlyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Jean-François Hocquette (France)
Bogdan Szostak (Poland)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
Vasilef Atanasov (Bulgaria)
Roumiana Tsenkova (Japan)

English Editor
Yanka Ivanova (Bulgaria)

Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agrisctech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agrisctech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines
The articles appearing in this journal are indexed and abstracted in: AGRIS (FAO), CABI, EBSCO-host, ROAD and DOAJ. DOI system is used for article identification. The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.
This issue is printed with the financial support by Contract No. DNP 06-41/20.12.2017, financed from Fund 'Scientific Research' grant Bulgarian scientific periodicals.

Address of Editorial office:
Agricultural Science and Technology
Faculty of Agriculture, Trakia University
Student's campus, 6000 Stara Zagora
Bulgaria
Telephone: +359 42 699448 +359 42 699446
www.agrisctech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699446
E-mail: editoffice@agrisctech.eu
Evaluation of powdery mildew resistance in various melon (Cucumis melo L.) genotypes

Zh. Ivanova*, K. Vasileva, N. Velkov, S. Grozeva

Maritsa Vegetable Crops Research Institute, 32 Brezovsko Shosse Str., 4003 Plovdiv, Bulgaria

(Manuscript received 21 August 2018; accepted for publication 14 October 2018)

Abstract. Powdery mildew, caused by Podosphaera xanthii and Golovinomyces cichoracearum, is an economically important disease in melon worldwide. Genetic resistance is one of the most suitable strategies to control powdery mildew. During the last few years several races of the pathogens have been reported. The need to develop resistant varieties is a challenge for each breeding program. Leaf disc assay was used in phytopathology and breeding programs as a rapid and reliable method for evaluation of disease resistance in a large number of plant materials. The purpose of this study was to establish species and races of powdery mildew in Plovdiv region, South Central Bulgaria; to develop a suitable system of pathogen isolation and cultivation; to determine the resistance levels in different melon genotypes available in Maritsa Vegetable Crops Research Institute (MVCRI) - Plovdiv collection by the leaf disc assay. Fifty-three melon genotypes, including lines, varieties, hybrids and ten differential lines were tested. The data showed that causal agent of powdery mildew was race 1 of P. xanthii in Plovdiv region. Our experimental results indicated that for the long-term storage of powdery mildew it is preferable to keep a whole plant under in vitro conditions. This allows the preservation of powdery mildew for two months before transferring on a new tissue. Thirty-four of the tested melon genotypes reacted as immune or resistant and nineteen as susceptible. Resistant melon genotypes are a suitable source in initiating a new breeding program aimed to increase resistance to powdery mildew.

Keywords: Podosphaera xanthii, species and races, level of resistance, disease index, Plovdiv region

Introduction

Melon (Cucumis melo L.) is one of the most important horticultural crops belonging to Cucurbitaceae family. In Bulgaria production areas of melon amount to 1700ha during the last few years (www.mzh.government.bg). Their economic significance is due to the high nutritional and biological qualities and specific taste properties of the fruits. Intensification in agricultural practices contributed to occurrence of pests and diseases that require the use of more pesticides. Powdery mildew, caused by Podosphaera xanthii [syn. Sphaerotheca fuliginea (Schlecht) Polacci] and Golovinomyces cichoracearum (syn. Erysiphe cichoracearum DC. Ex Mérat), is one of the most important diseases of melons worldwide (Kristkova et al., 2009; McCreight, 2012). Several physiological races of P. xanthii and G. cichoracearum have been identified (Lebeda et al., 2016).

In Bulgaria, P. xanthii is spread predominantly in the field conditions compared to G. cichoracearum. Race 1 of P. xanthii is identified in most cases but in some years race 2 appears (Angelov, 1995; Velkov and Masheva, 2002). The symptoms of both pathogens are identical as they cover leaf surface with white powder (mycelia and conidia) (Sitterly, 1978). The severe attacks may lead to reduction of yields by 20 to 50%, and the rate of infection may reach 50-70% (Mesterov et al., 1979; Velkov, 2007; El-Naggar et al., 2012).

Development of resistant varieties is a sustainable approach that can provide the success of melon production. A number of resistant lines and varieties have been developed in the USA, France, Israel and other countries that belong to different variety types (cantaloupes, charentais type, galia type, etc.) (Karchi, 2000; McCreight, 2006; Pitrat and Besombes, 2008). Bulgarian varieties (Bulgarian type) are characterized with specific traits concerning appearance of fruits, taste, aroma, etc. (Velkov and Petkova, 2014). Combining resistance and fruit quality in one genotype is a real challenge for breeders. The genetic control of powdery mildew resistance is not fully understood. Most of the researchers established monogenic dominant control (McCreight, 2006; Dogimont, 2011) while in some cases the genetic control is from one recessive or one semi-dominant gene (McCreight, 2003).

Screening of the available melon collection is an initial step for development of a new breeding program directed to increasing the resistance to powdery mildew. Two basic methods for screening of melon reaction are used: whole plant infection and observation, and leaf disc assay. A number of researchers prefer the leaf disc assay because it is a fast, nondestructive method and allows phenotyping of plant and fruit (Cohen, 1993; Cohen et al., 2000; Velkov et al., 2010).

The Maritsa Vegetable Crops Research Institute, Plovdiv has a working collection of cucurbit germplasm and has developed melon inbred lines with high fruit quality (Velkov and Petkova, 2014). The information about the reaction of these genotypes to powdery mildew is limited. Evaluation of the working collection may contribute to the identification of resistant genotypes in support of breeding programs.

The purpose of this study is to be established species and races of powdery mildew in Plovdiv region; to adapt a suitable system of isolate maintenance and to determine the level of resistance in different melon genotypes available in our collection by the leaf disc assay.

Material and methods

Study areas

The experimental work was carried out in a tissue culture...
laboratory and a greenhouse at the Maritsa Vegetable Crops Research Institute, Plovdiv, Bulgaria. The experiment was conducted in 2017-2018. Fifty-three melon genotypes from Maritsa Institute collection (inbred lines, varieties and hybrids) were evaluated. Ten melon differential genotypes obtained from INRA (France) were included for determination of the powdery mildew races.

Plant material

The 53 genotypes were sown in 40-cell polystyrene trays containing perlite in a greenhouse substrate on 27th March. One week later the plants were transplanted in 5L pots with mixture of peat moss and perlite in ratio 1:1 (v/v). Irrigation was supplied by the visual assessment of plants and nutritional needs according to the recommendations of the Laboratory of Plant Nutrition in the Maritsa Institute. Plots were arranged in a randomized complete block design, with three replications, two plants per plot and one plant per pot, a total of six plants per genotype.

Pathogen identification

In order to establish the species and races composition of powdery mildew 20 samples were collected from the infected plants of different Cucurbitaceae crops in the fields of Plovdiv region. The identification of powdery mildew species was based on morphology of conidia (shape and size, presence or absence of fibrosin bodies, side germination of conidia) or by the features of cleistothecia (size of peridial cell, number of asci and ascospore) when found (Nagy, 1970).

Ten melon differential lines were used to identify physiological races of P. xanthii. Iran-H and Hales Best Jumbo (HBJ) (both susceptible to races 1, 2, 3, 4 and 5), Nantais Oblong and Védrantais (both resistant to race 0, susceptible to races 1, 2, 3, 4 and 5), PMR 45 (resistant to races 0 and 1), PMR 5 (resistant to races 0, 1 and 2), Seminole (resistant to races 1, 2 and 3), WMR 29 (resistant to races 0, 1 and 2F; heterogeneous reaction to race 2US; susceptible to races 4 and 5), Edisto 47 (susceptible to races 2US and 5), PI 414723 (resistant to races 0, 1, 2F, 3, 4, and 5; susceptible to race 2US) (McCreight, 2006).

Maintaining the pathogen on a plant in vitro

Seeds from cv. Mirey (Cucumis sativus) were sterilized in 5% solution of Ca-hypochlorite for one hour and rinsing three-times with sterile dH₂O. The seeds were sown for germination in 20ml nutrient medium comprising macro-, microelements by Murashige and Skoog (1962), vitamins by Gamborg et al. (1968), 20gL⁻¹ sucrose, 7gL⁻¹ agar and pH=5.8, before autoclaving, in 200ml culture glass vessels. After germination, the plants developing cotyledons were infected with the pathogen of powdery mildew and cultivated in a growth chamber at a temperature of 25±1ºC, a light intensity of 200 μmol m⁻² s⁻¹, 16/8h photoperiod (Figure 1a).

Maintaining the pathogen on cotyledon in vitro

For this purpose, cotyledons of bottle gourd, sensitive to powdery mildew, were sterilized in a 5% solution of Ca-hypochlorite for a different time interval (5, 8, 10 and 12 minutes) and washed 3 times with sterile dH₂O. Cotyledons were infected with the pathogen and cultivated in modified medium containing mannitol 20gL⁻¹, sucrose 10gL⁻¹, agar 7gL⁻¹ (Figure 1b) (Bertrand, 1991). Petri dishes with cotyledons were grown in a growth chamber at a temperature of 25±1ºC, a light intensity of 200 μmol m⁻² s⁻¹, 16/8h photoperiod. The experiment has been carried out in 3 replications for each time interval, and the degree of cotyledon infection with secondary pathogens has been reported.

Leaf disc assay

Young plants in the phase 3-4 leaf were used for leaf discs. Leaf discs with 15mm diameter were cut by cork borer from fully developed young leaves and placed (adaxial surface up) on wet filter paper in plastic containers (10x20x3 cm). For each genotype 5 discs in 3 replications were used, and the experiment was conducted twice (Figure 2).

Reaction of tested melon genotypes to race 1 of P. xanthii by leaf disc assay

Inoculation was performed by direct blowing away the spores of P. xanthii on leaf discs. For each of the experiments, 4 leaves covered with young spores were used. The leaf discs were placed in a growth chamber at a temperature of 25±1ºC, light intensity 200 μmol m⁻² s⁻¹ and photoperiod 16/8h. The degree of powdery mildew attack was recorded on the 13th day after infection using the 0-4 scale (Cohen, 1993): 0 = without symptoms; 1 = up to 10% of the surface of the leaf disc was infested; 2 = 11-25% of the surface of the leaf disc was infested; 3 = 26-50% of the surface of the leaf disc was infested; 4 = over 50% of the surface of the leaf disc was infested.

Where: 0 and 1 (R) resistance response, 2, 3, and 4 (S) sensitive reaction.

Statistical analysis

All data were statistically analyzed using the software SPSS 12 (SPSS Inc., USA). Duncan's multiple range test was performed at P≤0.05 on each of the significant variables measured.
Results and discussion

During the autumn of 2017, leaves with symptoms of powdery mildew were collected from 20 plant hosts belonging to Cucurbitaceae family of different locations in the Plovdiv region. By microscopic observation the causal agent of powdery mildew was identified as P. xanthii in all of the collected samples. The shape of conidiospores was oblong, germinated in the middle of the side and contained fibroin bodies. Some of the samples had formed cleistothecia with morphological features identical to P. xanthii – the size of peridial cells was bigger compared to G. chichoracearum, the number of ascii was one and ascospores were eight (Figure 3).

![Figure 3. Cleistothecia (a) and conidia (b) of Podoshaea xanthii](image)

Previous studies showed that P. xanthii has a wider distribution than G. chichoracearum in Bulgaria. P. xanthii is identified in 74% of Cucurbitaceae crops compared to G. chichoracearum (3%) and mixed infection (23%) in field conditions (Velkov and Masheva, 2002). In contrast, in Hungary (Nagy, 1970) P. xanthii and G. chichoracearum were found on cucurbits in equal ratio. In the Czech Republic G. chichoracearum was detected in 98.8% of the locations, while P. xanthii was found as a single species in 1.2% of locations and at 28.4% of locations as mixed infections (Kristkova et al., 2009).

In France G. chichoracearum was identified from 9% to 39% of the isolates (Bardin et al., 1999). P. xanthii was the only powdery mildew pathogen found in Spain, Israel and Turkey (Cohen, 2004).

Physiological races of P. xanthii are another problem in melon breeding. Several physiological races have been identified. In this study the response of differential varieties to the pathogen indicates that the isolates belong to race 1 of P. xanthii. Resistant reaction to PI414723, Seminole, PMR5, PMR45, WMR29, Edisto47 and susceptible to Vedrantais, Iran-H, HBJ, Nantes oblong was established (Table 1). In previous studies in Bulgaria race 1 of P. xanthii (Velkov and Masheva, 2002) was established as well as race 1 and race 2 (Lozakov and Angelov, 1983).

In Brazil, P. xanthii races 1 and 2 are the most widespread (Rabelo et al., 2017). Race 3 was reported in USA in 1978 (Thomas, 1978). In Spain four races (1, 2, 4 and 5) were reported (Pino et al., 2017).

Until now several races have been reported on the basis of number of melon differential genotypes that illustrate complexity of the performance of screening tests and breeding program in general. In regard to this, breeding programs have been focused on development of the resistant varieties to races of powdery mildew that predominantly occur in the region of melon production. The results of our study indicated that the causal agent of powdery mildew was race 1 of P. xanthii in the region of Plovdiv. For this reason, we used one isolate of the pathogen to carry out the screening test.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Disease reaction</th>
<th>Mean ±SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI414723</td>
<td>R</td>
<td>0.00 ±0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Seminole</td>
<td>R</td>
<td>0.00 ±0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PMR5</td>
<td>R</td>
<td>0.00 ±0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PMR45</td>
<td>R</td>
<td>0.00 ±0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>WMR29</td>
<td>R</td>
<td>0.00 ±0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Edisto47</td>
<td>R</td>
<td>0.00 ±0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Vedrantais</td>
<td>S</td>
<td>3.67 ±0.62</td>
<td>0.16</td>
</tr>
<tr>
<td>Iran-H</td>
<td>S</td>
<td>3.40 ±0.51</td>
<td>0.13</td>
</tr>
<tr>
<td>HBJ</td>
<td>S</td>
<td>2.47 ±0.92</td>
<td>0.24</td>
</tr>
<tr>
<td>Nantes oblong</td>
<td>S</td>
<td>3.47 ±0.64</td>
<td>0.17</td>
</tr>
</tbody>
</table>

It was important to adapt a suitable system of isolates maintenance. The susceptible pathogen of the powdery mildew makes it difficult to conduct the screening tests. The duration of maintenance of the pathogen depends on the period through which the plant host could survive. For that reason it is necessary often to transfer to new plant material. In our experimental work we tested the possibility of prolonged storage of powdery mildew on cotyledon and on a whole plant in vitro. As a result of the experiment it was found that the most suitable time for sterilization of the cotyledons of the gourd is 10 min (data not shown). Coating on cotyledons appears on the 10th day of inoculation. Stronger producer of spores was found in samples with 5 and 8 min sterilization, but they also lead to developed secondary pathogens (saprophytes). The 12-minute exposure sample showed no development of spores of powdery mildew. The pathogen can be maintained on the cotyledons until three weeks, and then it has to be inoculated on a new tissue. Similar results were obtained from other researchers. Bertrand (1988) found that powdery mildew pathogens (Sphaerotheca fuliginea and Erysiphe chichoracearum) can be stored for 15 days on cucumber cotyledons before being transferred. Molot et al. (1987) demonstrated different in vitro technique for conservation of powdery mildew as the longest period of maintenance was archived on leaves that survived for 2 months.

Our experimental results have found that for long-term storage of powdery mildew, it is preferable to maintain a whole plant under in vitro conditions. This allows the preservation of powdery mildew for two months before transferring on a new tissue.

The results of the screening test showed that from 53 melon genotypes resistant reaction (R) possess lines PMR6 USA, L98123 USA, An Noon, Ananas, AGY, PI183047 USA, PI124111 USA, GL317, 5-1-2, K15/6, 11/9C, 10-10/2, 11-1/5, 4-8/1, VI-1/9, I-2/14, I-2/18, 5-1-1/1, 5-1-1/3, 6-1/1, 7-7/2, TGR1551, I-2; recombinant inbred lines (11/9C(K-05x1Seminole)/1312, 11/9C(K-05x1Seminole)/34, (11/9C(K-05x1Seminole)/mono, (11/9C(K-05x1Seminole)/5, PI414723xSeminoleF1, PI414723xGynodowF1, PI414723xK/15-6F1, BK/1-5-5xPI414723F1; varieties Pobeditel, Georgia and Neon (Table 2). The most of the breeding material was immune to the local isolate of P. xanthii. The susceptible melon genotype reacted with index of mildew attack from 1.60 (GL329, Delicious 51 US, BK/1-5-5) to 4.00 (Charantais T1 and Charantais Fom 1).
<table>
<thead>
<tr>
<th>Genotype</th>
<th>Disease reaction</th>
<th>Mean</th>
<th>±SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medena rosa</td>
<td>S</td>
<td>2.53</td>
<td>de</td>
<td>0.64</td>
</tr>
<tr>
<td>Pobeditel</td>
<td>R</td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
</tr>
<tr>
<td>Georgia</td>
<td>R</td>
<td>0.60</td>
<td>j</td>
<td>0.63</td>
</tr>
<tr>
<td>Deserten 5</td>
<td>S</td>
<td>3.00</td>
<td>bc</td>
<td>0.65</td>
</tr>
<tr>
<td>Neon</td>
<td>R</td>
<td>1.27</td>
<td>hi</td>
<td>0.96</td>
</tr>
<tr>
<td>Ananas</td>
<td>R</td>
<td>0.33</td>
<td>jk</td>
<td>0.49</td>
</tr>
<tr>
<td>I-2/14</td>
<td>R</td>
<td>0.47</td>
<td>jk</td>
<td>0.52</td>
</tr>
<tr>
<td>I-2/18</td>
<td>R</td>
<td>0.33</td>
<td>jk</td>
<td>0.49</td>
</tr>
<tr>
<td>5-1-1/1</td>
<td>R</td>
<td>0.20</td>
<td>jk</td>
<td>0.41</td>
</tr>
<tr>
<td>5-1-1/3</td>
<td>R</td>
<td>0.33</td>
<td>jk</td>
<td>0.49</td>
</tr>
<tr>
<td>L6-1/1</td>
<td>R</td>
<td>0.27</td>
<td>jk</td>
<td>0.46</td>
</tr>
<tr>
<td>L7-7/2</td>
<td>R</td>
<td>0.60</td>
<td>j</td>
<td>0.51</td>
</tr>
<tr>
<td>L10-10/2</td>
<td>R</td>
<td>0.47</td>
<td>jk</td>
<td>0.52</td>
</tr>
<tr>
<td>L11-1/5</td>
<td>R</td>
<td>0.40</td>
<td>jk</td>
<td>0.51</td>
</tr>
<tr>
<td>L12-1/4</td>
<td>S</td>
<td>2.73</td>
<td>c-e</td>
<td>0.59</td>
</tr>
<tr>
<td>L4-8/1</td>
<td>R</td>
<td>0.40</td>
<td>jk</td>
<td>0.51</td>
</tr>
<tr>
<td>I-2</td>
<td>R</td>
<td>1.33</td>
<td>hi</td>
<td>0.49</td>
</tr>
<tr>
<td>Ogen 1/2016</td>
<td>S</td>
<td>3.40</td>
<td>ab</td>
<td>0.51</td>
</tr>
<tr>
<td>Hybrid 1</td>
<td>S</td>
<td>3.33</td>
<td>ab</td>
<td>0.49</td>
</tr>
<tr>
<td>Charantais T1 (1)</td>
<td>S</td>
<td>4.00</td>
<td>ab</td>
<td>0.00</td>
</tr>
<tr>
<td>Charantais Fom 1 (2)</td>
<td>S</td>
<td>4.00</td>
<td>ab</td>
<td>0.00</td>
</tr>
<tr>
<td>Charantais Fom 2 (3)</td>
<td>S</td>
<td>3.73</td>
<td>ab</td>
<td>0.46</td>
</tr>
<tr>
<td>Margot (4)</td>
<td>S</td>
<td>2.87</td>
<td>cd</td>
<td>0.35</td>
</tr>
<tr>
<td>Isabelle (5)</td>
<td>S</td>
<td>2.33</td>
<td>ef</td>
<td>0.49</td>
</tr>
<tr>
<td>AGY</td>
<td>R</td>
<td>1.13</td>
<td>i</td>
<td>0.64</td>
</tr>
<tr>
<td>Gynodow</td>
<td>S</td>
<td>2.40</td>
<td>ef</td>
<td>0.51</td>
</tr>
<tr>
<td>BG14</td>
<td>S</td>
<td>2.33</td>
<td>ef</td>
<td>0.49</td>
</tr>
<tr>
<td>BK/1-5-5</td>
<td>S</td>
<td>1.60</td>
<td>i</td>
<td>0.64</td>
</tr>
<tr>
<td>K-052/4</td>
<td>S</td>
<td>3.47</td>
<td>ab</td>
<td>0.52</td>
</tr>
<tr>
<td>Poul</td>
<td>S</td>
<td>3.53</td>
<td>ab</td>
<td>0.52</td>
</tr>
<tr>
<td>PI183047 USA</td>
<td>R</td>
<td>0.53</td>
<td>j</td>
<td>0.52</td>
</tr>
<tr>
<td>PI124111 USA</td>
<td>R</td>
<td>1.20</td>
<td>i</td>
<td>1.26</td>
</tr>
<tr>
<td>MTG</td>
<td>S</td>
<td>3.00</td>
<td>bc</td>
<td>0.65</td>
</tr>
<tr>
<td>GL317</td>
<td>R</td>
<td>1.27</td>
<td>hi</td>
<td>0.80</td>
</tr>
<tr>
<td>GL321</td>
<td>S</td>
<td>1.67</td>
<td>gh</td>
<td>0.49</td>
</tr>
<tr>
<td>GL329</td>
<td>S</td>
<td>1.60</td>
<td>i</td>
<td>0.64</td>
</tr>
<tr>
<td>Delicious 51 US</td>
<td>S</td>
<td>1.60</td>
<td>i</td>
<td>0.64</td>
</tr>
<tr>
<td>TGR 1551</td>
<td>R</td>
<td>1.20</td>
<td>i</td>
<td>1.26</td>
</tr>
<tr>
<td>PI414723 x Seminole F1</td>
<td>R</td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
</tr>
<tr>
<td>PI414723 x K/15-6 F1</td>
<td>R</td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
</tr>
<tr>
<td>PI414723 x Gynodow F1</td>
<td>R</td>
<td>0.60</td>
<td>j</td>
<td>0.51</td>
</tr>
<tr>
<td>Vi-1/6</td>
<td>R</td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
</tr>
<tr>
<td>BK/1-5-5 x PI414723 F1</td>
<td>R</td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
</tr>
<tr>
<td>L5-1-2</td>
<td>R</td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
</tr>
<tr>
<td>K15/6</td>
<td>R</td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
</tr>
<tr>
<td>11/9C</td>
<td>R</td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
</tr>
<tr>
<td>(11/9C x K-051 x Seminole)</td>
<td>R</td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
</tr>
</tbody>
</table>
(11/9CxK-051xSeminole)/34
(11/9CxK-051xSeminole)/5
(11/9CxK-051xSeminole)/mono
PMR 6 USA
LJ 91213 USA
An Noon

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>k</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>k</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.47</td>
<td>k</td>
<td>0.52</td>
<td>0.13</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*a.b.c.. p≤0.05 Duncan's multiple range test

Pi414723x K/15-6F1, BK/1-5-5xPi414723F1; varieties Pobeditel, Georgia and Neon (Table 2). The most of the breeding material was immune to the local isolate of P. xanthii. The susceptible melon genotype reacted with index of mildew attack from 1.60 (GL329, Delicious 51 US, BK/1-5-5) to 4.00 (Charantais T1 and Charantais Fom 1).

Resistant reaction can be explained with their pedigree. For example, lines 5-1-2, 5-1-1/1 and 5-1-1/3 were derived from crosses with resistant progenitor cv. Seminole, lines K/15-6 and 11/9C were derived from crosses with PI 124112 and PI 124111 (Angelov, 2000). Recombinant inbred lines demonstrated very high level of resistance to P. xanthii race 1 based on the same sources – cv. Seminole, PI 124112 and PI 124111. Another trait possessed by recombinant inbred lines is male sterility type “ms-4”. This character is very important during seed production because of easy pollination and low costs of the seeds. Variety Pobeditel is a hybrid combination between lines K/15-6 and 5-1-2 whose genes of resistance confirm their effectiveness.

The studied melon genotypes are of great value in initiating a new breeding program aimed to increase resistance to powdery mildew. Thirty-four genotypes reacted as immune or resistant and nineteen as susceptible. It should be kept in mind that species and races composition could be changed during the years and additional screening tests are required.

Conclusion

Causal agent of powdery mildew is Podosphaera xanthii race 1 for the region of Plovdiv. A more suitable approach for maintenance of powdery mildew is a whole plant under in vitro conditions. Thirty-four of the studied melon genotypes responded as immune and resistant to P. xanthii race 1 that can be used as a suitable source for a breeding program.

Acknowledgements

The research leading to these results has received funding from the National Science Fund, Bulgaria, and grant by the project DM16/1.

References

Kristkova E, Lebeda A and Sedlakova B, 2009. Species spectra, distribution and host range of cucurbit powdery mildews in the Czech Republic, and in some other European and Middle Eastern countries. Phytoparasitica, 37, 337-350.

Genetics and Breeding

Knezha 461 - A new maize hybrid from the middle early group
N. Petrovska, V. Valkova
275

Evaluation of powdery mildew resistance in various melon (Cucumis melo L.) genotypes
Zh. Ivanova, K. Vasileva, N. Velkov, S. Grozeva
279

Study on the continuity of farmer’s breeding activity with Patch Faced Maritza sheep breed
P. Zhelyazkova, V. Petrova, D. Dimov
285

Genetic diversity at four Nigerian sheep breeds assessed by variation of albumin and carbonic anhydrase in cellulose acetate electrophoretic systems
O.H. Osaiyuwu, M.O. Akinyemi, A.E. Salako, O.K. Awobajo
290

Nutrition and Physiology

Laying performance and cost-benefits of feeding brown laying hens with raw or processed tropical sickle pod (Senna obtusifolia) seed meal based-diets
C. Augustine, I.D. Kwari, J.U. Igwebuikwe, S.B. Adamu, C.I. Medugu, D.I. Mojaba
297

Effect of diets with raw garlic flour on growth performance and blood parameters in rabbits
M.U. Onyekwere, P.C. Jiwuba, U.N. Egu
302

Production Systems

Grain yield response of some agronomy practices on contemporary common winter wheat cultivars (Triticum aestivum L.)
M. Nankova, A. Atanasov
308

Productivity and yield stability at late treatment of durum wheat (Triticum durum Desf.) with ant broadleafed herbicides
II. Influence at treatment during 2nd stem node stage
Gr. Delchev, M. Delcheva
315

Effect of conservation agriculture on grain yield and income of maize under maize based cropping system in far western Nepal
H.K. Prasai, Sh.K. Sah, A.K. Gautam, A.P. Regmi
320

Influence of foliar feeding of common wheat varieties on the nutritional value of the grain
A. Stoyanova, G. Ganchev, V. Kuneva
333
Effects of nitrogen doses on growth and some nutrient element uptake of sunflower (*Helianthus Annuus* L.) hybrids
G. Ören, H. Çelik

Effectiveness of Oxalis bee and Ecostop for prophylaxis and control of varroosis in honey bees (*Apis mellifera* L.)
I. Zhelyazkova, S. Lazarov

Agriculture and Environment

Effect of wheat straw and cellulose degrading fungi of genus *Trichoderma* on soil respiration and cellulase, betaglucosidase and soil carbon content
D. Draganova, I. Valcheva, Y. Kuzmanova, M. Naydenov

Antioxidant properties and phytochemicals of three brown macro algae from the Dardanelles (Çanakkale) Strait
A.K. Ilknur, G. Turker

Product Quality and Safety

Proximate composition, lipid quality and heavy metals content in the muscle of two carp species
A. Merdzhanova, V. Panayotova, D.A. Dobreva, K. Peycheva

Quantity and quality of wool yolk in Caucasian Merino rams
D. Pamukova, G. Staykova, N. Stancheva
Instruction for authors

Preparation of papers

Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter /bold/, 14/ without any abbreviations.

Names and affiliation of authors

The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors is designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. **Tables** should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References: In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004). References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

Thesis: Hristova D, 2013. Investigation on genetic diversity in local sheep breeds using DNA markers. Thesis for PhD, Trakia University, Stara Zagora, Bulgaria, (Bg).

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare

Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section "Material and methods".