Editor-in-Chief
Georgi Petkov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria
E-mail: gpetkov@af.uni-sz.bg

Co-Editor-in-Chief
Dimitar Panayotov
Faculty of Agriculture
Trakia University, Stara Zagora
Bulgaria

Editors and Sections
Genetics and Breeding
Atanas Atanasov (Bulgaria)
Svetlana Georgieva (Bulgaria)
Nikolay Tsenov (Bulgaria)
Max Rothschild (USA)
Ihsan Soysal (Turkey)
Horia Grosu (Romania)
Stoicho Metodiev (Bulgaria)
Bojin Bojinov (Bulgaria)

Nutrition and Physiology
Nikolai Todorov (Bulgaria)
Peter Surai (UK)
Ivan Varlyakov (Bulgaria)
George Zervas (Greece)
Vasil Pirgozliev (UK)

Production Systems
Radoslav Slavov (Bulgaria)
Dimitar Pavlov (Bulgaria)
Jean-François Hocquette (France)
Bogdan Szostak (Poland)

Agriculture and Environment
Martin Banov (Bulgaria)
Peter Cornish (Australia)
Vladislav Popov (Bulgaria)
Tarek Moussa (Egypt)

Product Quality and Safety
Stefan Denev (Bulgaria)
Vasil Atanasov (Bulgaria)
Roumiana Tsenkova (Japan)

English Editor
Yanka Ivanova (Bulgaria)

Scope and policy of the journal
Agricultural Science and Technology (AST) – an International Scientific Journal of Agricultural and Technology Sciences is published in English in one volume of 4 issues per year, as a printed journal and in electronic form. The policy of the journal is to publish original papers, reviews and short communications covering the aspects of agriculture related with life sciences and modern technologies. It will offer opportunities to address the global needs relating to food and environment, health, exploit the technology to provide innovative products and sustainable development. Papers will be considered in aspects of both fundamental and applied science in the areas of Genetics and Breeding, Nutrition and Physiology, Production Systems, Agriculture and Environment and Product Quality and Safety. Other categories closely related to the above topics could be considered by the editors. The detailed information of the journal is available at the website. Proceedings of scientific meetings and conference reports will be considered for special issues.

Submission of Manuscripts
There are no submission / handling / publication charges. All manuscripts written in English should be submitted as MS-Word file attachments via e-mail to editoffice@agrisctech.eu. Manuscripts must be prepared strictly in accordance with the detailed instructions for authors at the website www.agrisctech.eu and the instructions on the last page of the journal. For each manuscript the signatures of all authors are needed confirming their consent to publish it and to nominate on author for correspondence. They have to be presented by a submission letter signed by all authors. The form of the submission letter is available upon from request from the Technical Assistance or could be downloaded from the website of the journal. Manuscripts submitted to this journal are considered if they have submitted only to it, they have not been published already, nor are they under consideration for publication in press elsewhere. All manuscripts are subject to editorial review and the editors reserve the right to improve style and return the paper for rewriting to the authors, if necessary. The editorial board reserves rights to reject manuscripts based on priorities and space availability in the journal. The journal is committed to respect high standards of ethics in the editing and reviewing process and malpractice statement. Commitments of authors related to authorship are also very important for a high standard of ethics and publishing. We follow closely the Committee on Publication Ethics (COPE), http://publicationethics.org/resources/guidelines

The articles appearing in this journal are indexed and abstracted in: AGRIS (FAO), CABI, EBSCO-host, ROAD and DOAJ. DOI system is used for article identification.

The journal is freely available without charge to the user or his/her institution. Users can read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

This issue is printed with the financial support by Contract No. DNP 06-41/20.12.2017, financed from Fund ‘Scientific Research’ grant Bulgarian scientific periodicals.

Address of Editorial office:
Agricultural Science and Technology Faculty of Agriculture, Trakia University Student’s campus, 8000 Stara Zagora
Bulgaria
Telephone: +359 42 699 488
+359 42 699 446
www.agrisctech.eu

Technical Assistance:
Nely Tsvetanova
Telephone: +359 42 699 446
E-mail: editoffice@agrisctech.eu
Effectiveness of Oxalis bee and Ecostop for prophylaxis and control of varroosis in honey bees (Apis mellifera L.)

I. Zhelyazkova*, S. Lazarov

Department of Animal husbandry – Non-ruminants and other animals, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

(Manuscript received 24 August 2018; accepted for publication 26 October 2018)

Abstract. The objective of the present study is to determine the effectiveness of Ecostop (plates) and Oxalis Bee - plant-based products for the prevention and control of varroosis in bees (Apis mellifera L.). The study was conducted at the end of the 2017 Beekeeping Season of the Beekeeping Experimental Training Center at the Faculty of Agriculture, Trakia University, Stara Zagora. Two products were used: Ecostop containing peppermint oil (2 ml/plate) and timol (5 g/plate), and Oxalis Bee - zootechnical feed additive for bees, including plant extracts, organic acids and invert solution from bio-sugar. The dosing of the products is in accordance with the instructions of the producers Primavet-Soﬁa Ltd., Bulgaria and the company Vechni pcheli Ltd., Bulgaria. The development and extensivization of bee colonies at the beginning and the end of the study and the effectiveness of the applied products was determined. It has been established that the development of bee colonies is normal for the end of the beekeeping season. The comparative analysis of the acaricidal effect of the test products against Varroa destructor shows 98.55±0.30% for Ecostop and 78.15±8.76% for Oxalis Bee. The reported difference in efficacy of both preparations is reliable at p≤0.05.

Keywords: honey bees, Varroa destructor, alternative products, effectiveness

Introduction

Proceeding from the fact that the bee colony is a biological (economic) unit, the diseases, regardless of whether on the brood, the queen bee, the bees or the drones are diseases of the entire family. In the course of honeybee diseases there are some peculiarities which distinguish them from the diseases of the other agricultural animals (Gurgulova et al., 2000): bee diseases are manifested faster and are more persistent; bee and brood diseases spread very quickly not only in the bee colony but also in the other colonies in the apiary and in other apiaries in the area of useful bee flying.

Varroosis is a brood (worker, drone) disease and adult bees (worker bees, queen bee, drones) disease. The cause is an ectoparasite – the Varroa destructor mite. This is the most widespread disease causing extremely large economic damage to beekeeping worldwide. Practice shows that control of the disease requires regular annual prophylactic and healing measures. According to the data from Agrostatistics of the Ministry of Agriculture and Foods in 2016, 747,676 bee colonies in Bulgaria were treated against varroosis, which is 99.15% of the total number of colonies raised in the country (Bulletin No. 322, 2017).

For the prevention and control of varroosis at this stage a number of complex measures are applied: physical methods (using a temperature of 40-46°C for 30 minutes, which kills the mites, does not have a harmful effect on the bees but damages the brood – therefore only the bees are treated and only once in a season); mechanical biological methods (including the use of a construction frame - cutting the sealed drone brood and removing it from the hive); chemical methods (based on the use of chemical agents applied in various ways - by fumigation, mist, dripping, sprinkling, spraying, evaporation, supplemental feeding); alternative methods (use of organic acids, essential oils, plant extracts, etc.).

In the chemical methods chemical agents are used (of different chemical structure - amitraz, fluvinate, flumethrin, cumafos, etc.) having an acaricidal effect of 80-99% (Takeuchi and Sakai, 1986; Kostecki et al., 1987; Ellis et al., 1988; Kamburov et al., 1989; Watherell et al., 1990). The chemical products and their analogs such as Apistan, Varotom, Bayvarol, Perizin, etc. have been known for a long time and are being applied in almost all countries, incl. in Bulgaria. The Bulgarian product is Varostop with active substance flumethrin, analogous to Bayvarol. The product has a proven efficiency in time 99% (Gurgulova et al., 2008; 2011). Up to now, no product has been created which is harmless to the bees, highly effective and easy to apply, without residual quantities in the bee products, at low cost.

The disadvantages of conventional means of control of varroosis require that alternative methods be used to combat this disease. At the present stage, alternative products are particularly relevant, as in many countries Varroa destructor shows resistance to the various conventional acaricides. Alternative therapy and prevention do not create or rarely produce resistance to natural products - essential oils, acids, etc. The risk of contamination of bee products is also reduced because the alternative substances are of natural origin, not toxic to bees and humans and are contained in bee honey.

Thymol derived from thyme is most commonly used against the Varroa destructor mite. There are no published reports of resistance of Varroa to thymol. Nonetheless, Knight (2015) suggests as good practice thymol treatment to be alternated with other products. An example of this are the products: Api-Life-Var (76% thymol, 16.4% eucalyptol, 3.8% menthol and 3.8% camphor) with high acaricidal
efficiency of 95-98.6% (Moosbeckhofer, 1994); APIGUARD - a gel with a patented formula containing thymol and other natural substances; CAS-81 - a combination of thymol with a bitter wormwood infusion and pinetree tips (Kantar, 2007).

The use of formic acid in control of varroasis in European countries is widely accepted. It can be applied in beehive nests and when there is brood. In Bulgaria is registered product Formitom (plagues soaked with 66% formic acid).

Oxalic acid has been authorized as a means of controlling varroasis as early as 1983 in Russia. Later, it became of great importance in the control of varroasis in Europe, too. By Council Regulation/EC No. 1804 (1999), the use of oxalic acid is permitted in the European Union member states. When used correctly, oxalic acid is not harmful to the bees and it does not pollute honey and the other bee products. Oxalic acid is very efficient against mites, and when there is no brood efficiency reaches 97-99%.

In recent years, due to the high requirements of the EU countries, the production of quality and safe (without pollutants) bee products is imperative. The preservation of the valuable nutritional qualities and the biological value of bee honey, as well as the protection of the bee colonies from diseases, in particular varroasis, require the application of biological, zoohygienic and technological methods for control of varroasis by using organic acids (formic, oxalic, lactic), essential oils (thymol, menthol, eucalyptol, etc.) and plant extracts. In this regard, studies on the testing of various natural products as means for control of varroasis are very topical.

The objective of the present study is to determine the effectiveness of Ecostop (plates) and Oxalis Bee, plant-based products for the prevention and control of varroasis in bees (Apis mellifera L.).

Material and methods

Study area

The experiment was conducted in the period September – October 2017 on a training apiary of the Apiculture section at the Department of Animal husbandry – non-ruminants and other animals, Faculty of Agriculture, Trakia University, Stara Zagora. For the beekeeping practice this period is extremely important as the bee colonies are preparing for wintering and it is considered as the beginning of the beekeeping year.

Bee colonies settled in 10-combs Dadant-Blatt hives were used. Throughout the entire study period the treated colonies were monitored for normal development, occurrence of side effects and adverse effect of the tested products on the queen bee, the bees and the brood.

Products used for control of varroasis

For the purpose of the study, two products for control of varroasis were used:

- Ecostop – plates (veterinary-medical product), composition: 5g thymol and 2 ml mint oil/plate, produced by Primavet Ltd., Sofia, Bulgaria;
- Oxalic acid – used for the control treatment. All products were used as per the manufacturer’s instructions.

Groups of bee colonies

The experiment was conducted with 13 bee colonies, allocated in the following groups:

- O1 – experimental group of 5 bee colonies, treated with 2 plates of Ecostop;
- O2 – experimental group of 5 bee colonies treated with Oxalis Bee at a dose of 20ml per bee colony of normal strength. Oxalis Bee was applied by dripping on the upper laths of the frames and in the interframe spaces with bees;

The experiment started since 18 September 2017: Ecostop – left in the hive for 42 days (18 September - 30 October 2017); Oxalis Bee – three treatments at 7 days' intervals (18 September – 10 October 2017).

The recording of the mites dropped was done on: 24th hour, on 7th, 11th, 15th, 20th, 25th, 30th, 35th and 42nd days.

Determining the strength of bee colonies and the quantity of sealed brood

The development of bee colonies has been determined by generally accepted zootechnical methods. The strength (number of bees in the bee nest) is presented in number of interframe spaces tightly covered with bees and the conversion in kg at an estimate of 0.250kg of bees in a Danant-Blatt beehive interframe space. The quantity of brood is measured with a measurement frame with square sizes 5x5cm and is presented as number of cells (in 1cm² of the comb there are 4 worker cells).

Determining the extentive invasion (EI) of bees and brood

Methods for determining the EI of Varroa destructor in bees and brood have were used according to the Office International Epizootic Terrestrial Manual, 2008, Section 2.2.7. For this purpose, from a randomly selected comb, a few bees are swept in a polyethylene bag with alcohol. Then it is shaken well and the alcohol is poured out. Bees and fallen mites are counted and the infestation rate is determined in percentage (%).

Brood EI is determined by taking out 25 larvae and pupae from a brood comb and counting the mites on them. The calculation is made in percentages (%). Infestation rate (EI) of bees and brood is determined twice - at the beginning of the experiment before treatment and at the end before the control treatment.

Determining the number of fallen mites

The number of fallen mites has been traced during specific time periods. For the purpose greasy paper was used placed on the bottom of the hive. At the end of the experiment the data have been summed up and the total number of mites fallen as a result of the treatment has been obtained.

Control treatment

The control treatment was performed at the end of treatment with the tested products. For this purpose, oxalic acid 3% (dose 7ml per interframe space) was used. The product is applied by dropping into the interframe spaces covered with bees. To determine the number of mites fallen from the control treatment, greasy paper was used placed on the bottom of the hive.

Calculating the effectiveness of the applied products for control of Varroa destructor
The effectiveness of the applied products has been calculated by using the following formula:

$$\text{Effectiveness} (%) = \frac{\text{MFFTP} - \text{MFFCT}}{\text{MFFTP} \times \text{MFFCT}} \times 100.$$

Where:
- MFFTP = all mites fallen from the tested products collected during treatment with the tested product.
- MFFCT = all mites fallen from the control treatment.

Processing the obtained results

The obtained results have been processed statistically by using Statistica computer software.

Table 1. Development of bee colonies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Strength-kg</td>
<td>Brood-No of cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\bar{x}\pm S_x)</td>
<td>min/max</td>
</tr>
<tr>
<td>O - Ecostop</td>
<td>5</td>
<td>1.65±0.15</td>
<td>1.50/2.25</td>
</tr>
<tr>
<td>O - Oxalis Bee</td>
<td>5</td>
<td>1.70±0.18</td>
<td>1.25/2.00</td>
</tr>
<tr>
<td>C-control</td>
<td>3</td>
<td>1.58±0.08</td>
<td>1.50/1.75</td>
</tr>
</tbody>
</table>

*Brood rearing is over

At the end of the experiment the strength of the colonies in the three groups declined, and brood rearing ceased which is normal for the season. The least is the decrease in the number of bees in O group treated with Oxalis Bee - by 2.9%. In the control group and group O, the decrease was by 10.1% and 9.1%, respectively. The observed differences in the strength of the colonies at the end of the survey are unreliable.

The obtained values for extense invasion (EI) of the mite before and after treatment are given in Table 2.

Table 2. Extense invasion (EI) of brood and bees (%)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El brood-%</td>
<td>El bees-%</td>
</tr>
<tr>
<td></td>
<td>(\bar{x}\pm S_x)</td>
<td>min/max</td>
</tr>
<tr>
<td>O - Ecostop</td>
<td>12.80±6.37</td>
<td>0/36</td>
</tr>
<tr>
<td>O - Oxalis Bee</td>
<td>5.60±2.04</td>
<td>0/12</td>
</tr>
<tr>
<td>C-control</td>
<td>1.33±1.33</td>
<td>0/4</td>
</tr>
</tbody>
</table>

*Brood rearing is over

Prior to treatment the highest values for brood EI were found in the experimental group O, (12.80±6.37%) and the lowest for the control group (1.33±1.33%). The infestation rate of bees in the three groups has close values and varies from 3.20±1.07% to 5.63±2.25%. The reported differences in EI values for brood and bees in the groups are unreliable. As can be seen from the Table 2, at the beginning of the experiment great number of the mites are concentrated in the sealed brood.

After treatment with the products, in group O, (Ecostop) plates for 45 days and in group O, (Oxalis Bee) for 22 days, only the infestation rate of the bees is determined. The rearing of brood in the colonies in all three groups was terminated, indicating that in October the parasite gradually transferred to the bees.

The comparative analysis of the date for EI of bees at the beginning and at the end of the study shows that the infestation rates is reduced at the greatest extent in the group treated with Ecostop (6.2 times - from 4.09±0.81% to 0.66±0.32%) and in the control group (9.4 times - from 3.20±1.07% to 0.34±0.34%), and at the smallest extent in group O, (Oxalis Bee) - 1.7 times from 5.63±2.25% to 3.23±1.74%. The reported differences are statistically unproven. These results can be accounted for by the change in the strength of the bee colonies (greater decrease in the number of bees in the bee nests (strength) in the control and group O,) and the chasing away of the drones during that period (Table 1).

Table 3 and Figure 1 present the results from the monitoring of the mite fall dynamics in the experimental and the control groups during treatment. The data show that the greatest number of mites fall off in group O, under the effect of Ecostop, which also has the highest infestation rate - 458.60±68.70 pcs. At the end of the period the smallest number of mites fell off in the control group, resulting from natural mortality. No statistically significant differences have been found.

Results and discussion

In the experiment were used bee colonies with strength prior to the treatment (18 September 2017) between 1.58 and 1.70 kg of bees and quantity of brood varied from 4033 to 5060 cells with sealed worker brood (Table 1). Higher averages for the studied parameters (strength and quantity of brood) were defined in group O, where Oxalis Bee is to be applied. The reported differences between the groups are unreliable.
Table 3. Quantity of fallen mites (number) during the treatment period

<table>
<thead>
<tr>
<th>Group</th>
<th>Dates of reporting (start of treatment 18 Sep 2017)</th>
<th>Total mites fallen from the treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁-Ecostop</td>
<td>108.00±32.10</td>
<td>102.00±26.15</td>
</tr>
<tr>
<td>min/max</td>
<td>34/191</td>
<td>30/180</td>
</tr>
<tr>
<td>O₂-Oxalis Bee</td>
<td>91.40±29.48</td>
<td>37.00±16.78</td>
</tr>
<tr>
<td>min/max</td>
<td>31/202</td>
<td>5/85</td>
</tr>
<tr>
<td>C-control</td>
<td>40.67±26.74</td>
<td>43.33±29.63</td>
</tr>
<tr>
<td>min/max</td>
<td>2/92</td>
<td>0/100</td>
</tr>
</tbody>
</table>

The graphic presentation of the results (Figure 1) shows that in the experimental group O₁ (Ecostop) during the first 24 hours and until the end of the first week, 45.8% of the mites fell from the total number of fallen mites. In the same group the number of fallen mites decreased sharply after the 27th day of treatment - between 8.00±1.38 and 14.00±3.32 per reading (Table 3).

In group O₂ (Oxalis Bee), the greatest number of mites fell at the 24th hour of treatment (27.1% of the total number) (Figure 1). A minimum number of fallen mites was observed at the reporting at the end of the first week, then an increase in the number and again a decrease after the 22nd day. In the control group the main number of mites fell up to the 15th day - 82.9% of the total number. After this period at each reading the number of fallen mites was between 10 and 30 pcs. (Table 3 and Figure 1).

The comparative analysis of the data on the number of dead mites resulting from the control treatment shows that the lowest number of mites (1.93% of all fallen mites) fell in group O₁ (Ecostop), and in group O₂ (Oxalis Bee) - 20.3% of all fallen mites (Table 4). In the control group the mites that fell as a result of the control treatment were 16%.

The effectiveness of the tested products is presented in Table 4.

Table 4. Effectiveness (%) of the products used

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mites fallen from the treatment (pcs.)</th>
<th>Mites fallen from the control treatment (pcs.)</th>
<th>Total mites fallen (pcs.)</th>
<th>Effectiveness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁-Ecostop</td>
<td>5</td>
<td>458.60±68.70 280/681</td>
<td>6.00±0.84 4/9</td>
<td>464.60±68.28 286/685</td>
<td>98.55±0.30 97.90/99.42</td>
</tr>
<tr>
<td>min/max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂-Oxalis Bee</td>
<td>5</td>
<td>337.80±74.37 174/604</td>
<td>86.00±31.72 10/200</td>
<td>423.80±66.08 325/684</td>
<td>78.15±8.76 46.52/97.45</td>
</tr>
<tr>
<td>min/max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-control</td>
<td>5</td>
<td>214.00±118.70 32/437</td>
<td>40.67±34.17 6/109</td>
<td>254.67±117.42 39/443</td>
<td></td>
</tr>
<tr>
<td>min/max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability of differences between groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O₁/O₂*</td>
</tr>
</tbody>
</table>

* p<0.05
The established effectiveness of Ecostop shows that the product has high acaricidal activity - 98.55±0.30%. The fact that in the control treatment of colonies in the group treated with Ecostop the smallest number of mites fell, confirms its effectiveness. The efficacy in the second experimental group (O2 - Oxalis Bee) is much lower than the expected, 78.15±8.76%, respectively. The observed differences in the effectiveness values between the two experimental groups have low level of reliability (p<0.05).

Observation on the treated groups shows that the tested products do not affect adversely the bees and the brood. No self-change of queen bees in the experimental and the control groups have been established. The development of bee colonies at the end of the experiment was normal for the season, according to their initial strength.

The results obtained in the present study concerning the antiacaridial effect of Ecostop (plates) confirms the data from previous studies in our country, where this product showed effectiveness of over 90% (Gurgulova et al., 2004, 2008, 2011). The advantage of the product is that its application does not change the quality of honey. This product has no quarantine period. Its main ingredients (thymol and peppermint oil) are known for their remedial and antiparasitic action.

Oxalis Bee is a new product (zootechnical supplement for bees with anti-acaridial and stimulating effect), conforming the EU standards – Council Regulation/EC No. 834 (2007). It is composed of natural ingredients only (plant extracts, organic acids, inverted syrup). The data from the present study show lower acaridial effect, but as a zootechnical supplement it could be a good stimulant for the development of bee colonies. In this connection, it is necessary to deepen studies with this product as an anti-acaridial product for spring treatment and as a stimulant for spring and autumn supplemental feeding of bee colonies.

Conclusion

It was found that: a) the development of bee colonies included in the study is normal for the season (October 2017) as the number of bees in the bee nests gradually decreased and brood rearing is terminated; b) the extense invasion (EI) at the beginning and at the end of the study decreased to the largest extent in the control group (9.4 times) followed by the group O2 treated with Ecostop (6.2 times) and the group O2 treated with Oxalis Bee (1.7 times); c) for the entire treatment period with the tested products the largest number of mites fell into group O2 under the action of Ecostop (with high acaridial activity effectiveness 98.55±0.30%) and the lower one into group O2 (Oxalis Bee) - 78.15±8.76% (p<0.05); d) it is necessary to deepen the studies with Oxalis Bee (a new product) as an anti-acaridial product for spring treatment and as a stimulant for spring and autumn supplemental feeding of bee colonies.

References

Bulletin No. 322/February, 2017. Agrostatistics, Ministry of Agriculture and Food, Sofia (Bg).

Genetics and Breeding

Knezha 461 - A new maize hybrid from the middle early group
N. Petrovska, V. Valkova

Evaluation of powdery mildew resistance in various melon (Cucumis melo L.) genotypes
Zh. Ivanova, K. Vasileva, N. Velkov, S. Grozeva

Study on the continuity of farmer’s breeding activity with Patch Faced Maritza sheep breed
P. Zhelyazkova, V. Petrova, D. Dimov

Genetic diversity at four Nigerian sheep breeds assessed by variation of albumin and carbonic
anhydrase in cellulose acetate electrophoretic systems
O.H. Osaiyuwu, M.O. Akinyemi, A.E. Salako, O.K. Awobajo

Nutrition and Physiology

Laying performance and cost-benefits of feeding brown laying hens with raw or processed tropical
sickle pod (Senna obtusifolia) seed meal based-diets
C. Augustine, I.D. Kwari, J.U. Igwebuikwe, S.B. Adamu, C.I. Medugu, D.I. Mojaba

Effect of diets with raw garlic flour on growth performance and blood parameters in rabbits
M.U. Onyekwere, P.C. Jiwuba, U.N. Egu

Production Systems

Grain yield response of some agronomy practices on contemporary common winter wheat cultivars
(Triticum aestivum L.)
M. Nankova, A. Atanasov

Productivity and yield stability at late treatment of durum wheat (Triticum durum Desf.) with
antibroadleaved herbicides
II. Influence at treatment during 2nd stem node stage
Gr. Delchev, M. Delcheva

Effect of conservation agriculture on grain yield and income of maize under maize based cropping
system in far western Nepal
H.K. Prasai, Sh.K. Sah, A.K. Gautam, A.P. Regmi

Influence of foliar feeding of common wheat varieties on the nutritional value of the grain
A. Stoyanova, G. Ganchev, V. Kuneva
Effects of nitrogen doses on growth and some nutrient element uptake of sunflower (*Helianthus Annuus* L.) hybrids
G. Ören, H. Çelik

Effectiveness of Oxalis bee and Ecostop for prophylaxis and control of varroosis in honey bees (*Apis mellifera* L.)
I. Zhelyazkova, S. Lazarov

Agriculture and Environment

Effect of wheat straw and cellulose degrading fungi of genus *Trichoderma* on soil respiration and cellulase, betaglucosidase and soil carbon content
D. Draganova, I. Valcheva, Y. Kuzmanova, M. Naydenov

Antioxidant properties and phytochemicals of three brown macro algae from the Dardanelles (Çanakkale) Strait
A.K. Ilknur, G. Turker

Product Quality and Safety

Proximate composition, lipid quality and heavy metals content in the muscle of two carp species
A. Merdzhanova, V. Panayotova, D.A. Dobreva, K. Peycheva

Quantity and quality of wool yolk in Caucasian Merino rams
D. Pamukova, G. Staykova, N. Stancheva
Instruction for authors

Preparation of papers
Papers shall be submitted at the editorial office typed on standard typing pages (A4, 30 lines per page, 62 characters per line). The editors recommend up to 15 pages for full research paper (including abstract references, tables, figures and other appendices).

The manuscript should be structured as follows: Title, Names of authors and affiliation address, Abstract, List of keywords, Introduction, Material and methods, Results, Discussion, Conclusion, Acknowledgements (if any), References, Tables, Figures.

The title needs to be as concise and informative about the nature of research. It should be written with small letter/bold, 14/ without any abbreviations.

Names and affiliation of authors
The names of the authors should be presented from the initials of first names followed by the family names. The complete address and name of the institution should be stated next. The affiliation of authors are designated by different signs. For the author who is going to be corresponding by the editorial board and readers, an E-mail address and telephone number should be presented as footnote on the first page. Corresponding author is indicated with *.

Abstract should be not more than 350 words. It should be clearly stated what new findings have been made in the course of research. Abbreviations and references to authors are inadmissible in the summary. It should be understandable without having read the paper and should be in one paragraph.

Keywords: Up to maximum of 5 keywords should be selected not repeating the title but giving the essence of study.

The introduction must answer the following questions: What is known and what is new on the studied issue? What necessitated the research problem, described in the paper? What is your hypothesis and goal?

Material and methods: The objects of research, organization of experiments, chemical analyses, statistical and other methods and conditions applied for the experiments should be described in detail. A criterion of sufficient information is to be possible for others to repeat the experiment in order to verify results.

Results are presented in understandable tables and figures, accompanied by the statistical parameters needed for the evaluation. Data from tables and figures should not be repeated in the text. Tables should be as simple and as few as possible. Each table should have its own explanatory title and to be typed on a separate page. They should be outside the main body of the text and an indication should be given where it should be inserted.

Figures should be sharp with good contrast and rendition. Graphic materials should be preferred. Photographs to be appropriate for printing. Illustrations are supplied in colour as an exception after special agreement with the editorial board and possible payment of extra costs. The figures are to be each in a single file and their location should be given within the text.

Discussion: The objective of this section is to indicate the scientific significance of the study. By comparing the results and conclusions of other scientists the contribution of the study for expanding or modifying existing knowledge is pointed out clearly and convincingly to the reader.

Conclusion: The most important consequences for the science and practice resulting from the conducted research should be summarized in a few sentences. The conclusions shouldn’t be numbered and no new paragraphs be used. Contributions are the core of conclusions.

References:
In the text, references should be cited as follows: single author: Sandberg (2002); two authors: Andersson and Georges (2004); more than two authors: Andersson et al. (2003). When several references are cited simultaneously, they should be ranked by chronological order e.g.: (Sandberg, 2002; Andersson et al., 2003; Andersson and Georges, 2004).

References are arranged alphabetically by the name of the first author. If an author is cited more than once, first his individual publications are given ranked by year, then come publications with one co-author, two co-authors, etc. The names of authors, article and journal titles in the Cyrillic or alphabet different from Latin, should be transliterated into Latin and article titles should be translated into English. The original language of articles and books translated into English is indicated in parenthesis after the bibliographic reference (Bulgarian = Bg, Russian = Ru, Serbian = Sr, if in the Cyrillic, Mongolian = Mo, Greek = Gr, Georgian = Geor., Japanese = Ja, Chinese = Ch, Arabic = Ar, etc.)

The following order in the reference list is recommended:

Journal articles: Author(s) surname and initials, year. Title. Full title of the journal, volume, pages. Example:

Books: Author(s) surname and initials, year. Title. Edition, name of publisher, place of publication. Example:

Book chapter or conference proceedings: Author(s) surname and initials, year. Title. In: Title of the book or of the proceedings followed by the editor(s), volume, pages. Name of publisher, place of publication. Example:

The Editorial Board of the Journal is not responsible for incorrect quotes of reference sources and the relevant violations of copyrights.

Animal welfare
Studies performed on experimental animals should be carried out according to internationally recognized guidelines for animal welfare. That should be clearly described in the respective section “Material and methods”.